登录/
注册
下载APP
帮助中心
首页
考试
APP
当前位置:
首页
>
查试题
>
设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为( )。
单选题
设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为( )。
A. y″-y′+y=0
B. y″-2y′+2y=0
C. y″-2y′=0
D. y′+2y=0
查看答案
该试题由用户349****26提供
查看答案人数:27706
如遇到问题请
联系客服
正确答案
该试题由用户349****26提供
查看答案人数:27707
如遇到问题请
联系客服
搜索
热门试题
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数,必有( ).
设向量a={2,-1,2},向量b={0,3,-4},向量c={1,1,1},且3a+kb与c垂直,则常数k=().
设向量α1、α2、α3线性无关,向量β1可由αl、α2、α3线性表示,向量β2不能由α1、α2、α3线性表示,则对任意常数k必有( ).
微分y″=x+sinx方程的通解是( )。(c1,c2为任意常数)
在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是( )。
在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意的常数)为通解的是( )。
设α(→)、β(→)为n维列向量,且常数ci≠0(i=1,2),β(→)Tα(→)=c1-1+c2-1≠0。证明:A=E-c1α(→)β(→)T是非奇异矩阵且A-1=(E-c1α(→)β(→)T)-1=E-(c1+2c2-c1c2β(→)Tα(→))α(→)β(→)T,其中E为n阶单位矩阵。
微分方程yn=x+sinx的通解是(c1 ,c2为任意常数)()
设α1,α2,α3为三维向量,则对任意常数k,1,向量组α1+kα3,α2+1α3线性无关是向量组α1,α2,α3线性无关的( )
设f1(x),f2(x)是二阶线性齐次方程y″+p(x)y′+q(x)y=0的两个特解,则c1f1(x)+c2f2(x)(c1,c2是任意常数)是该方程的通解的充要条件为( )。
微分方程y"-4y=6的通解是(c1,c2为任意常数):
微分方程y′′-4y=4的通解是(C1,C2为任意常数):
微分方程y″-4y=4的通解是( )。(c1,c2为任意常数)
若A、B为非零常数,C1、C2为任意常数,则微分方程y″+k2y=cosx的通解应具有形式( )。
设α1,α2,α3均为三维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的
设y1、y2是二阶常系数线性齐次方程y"+p1y"十p2y=0的两个特解,C1、C2为两个任意常数,则下列命题中正确的是()
设α1,α2,α3是三维向量,则对任意的常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( )。
在下列微分方程中,以函数y=C1e^-x+C2e^4x(C1,C2为任意常数)为通解的微分方程是( )。
设随机变量X取值为1,2,3,4,P{X=i}=c*(5-i),i=1,2,3,4,则常数c的值为
设向量α1=(a1, b1, c1),α2=(a2, b2, c2),β1=(a1, b1, c1, d1),β2=(a2, b2, c2, d2),下列命题中正确的是
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
账号登录
短信登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了