单选题

设f1(x),f2(x)是二阶线性齐次方程y″+p(x)y′+q(x)y=0的两个特解,则c1f1(x)+c2f2(x)(c1,c2是任意常数)是该方程的通解的充要条件为(  )。

A. f1(x)f2′(x)-f2(x)f1′(x)=0
B. f1(x)f2′(x)+f1′(x)f2(x)=0
C. f1(x)f2′(x)-f1′(x)f2(x)≠0
D. f1′(x)f2(x)+f2(x)f1(x)≠0

查看答案
该试题由用户961****88提供 查看答案人数:39667 如遇到问题请联系客服
正确答案
该试题由用户961****88提供 查看答案人数:39668 如遇到问题请联系客服
热门试题
设y=f(x)二阶可导,且,f′(1)=0,f″(1)>0,则必有(). 设y1=3+x2,y2=3+x2+e-x是某二阶线性非齐次微分方程的两个特解,且相应的齐次方程有一个解为y3=x,则该方程的通解为____。 已知y1=cos2x-xcos2x/4,y2=sin2x-xcos(2x)/4是某二阶常系数线性非齐次方程的两个解,则该方程为____。 设函数y1(x)、y2(x)、y3(x)线性无关,且都是二阶非齐次线性方程y″+p(x)y′+q(x)y=f(x)的解,又c1与c2为任意常数,则该非齐次线性方程的通解可表示为(  )。 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上(  )。 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 设线性无关函数y1、y2、y3都是二阶非齐次线性方程y″+P(x)y′+Q(x)y=f(x)的解,C1、C2是待定常数。则此方程的通解是:() 二阶常系数齐次线性方程y''=0的通解为()。 设二阶线性微分方程y″+P(x)y′+Q(x)y=f(x)的三个特解是y1=x,y2=ex,y3=e2x,试求此方程满足条件y(0)=1,y′(0)=3的特解。 设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0。证明:∃ξ∈(0,1)使(ξ-1)3f″(ξ)+2f′(ξ)=0。 线性无关的函数y1(x),y2(x),y3(x)都是二阶非齐线性方程y"+a1(x)y’+a2(x)y=f(x)的解。C1,C2是任意常数,则该方程的通解是()。 二阶线性常系数齐次微分方程y″+2y=0的通解为____. 设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。 设f(x)=e3x,则在x=0处的二阶导数,f"(0)=(  ) 已知函数y=(x+1)ex是一阶线性微分方程y'+2y=f(x)的解,求二阶常系数线性微分方程y”+3y'+2y=f(x)的通解.   设f(x)二阶可导,且f′(x)>0,f″(x)>0,则当Δx>0时有(  )。 若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内(  )。 设y1(x)、y2(x)是二阶常系数线性微分方程y″+py′+qy=0的两个线性无关的解,则它的通解为______. 设偶函数f(x)具有二阶连续导数,且f″(0)≠0,则x=0(  )。 设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位