单选题

设有方程组AX=O与BX=0,其中A,B都是m×N阶矩阵,下列四个命题:
  (1)若AX=O的解都是BX=O的解,则r(A)≥r(B)
  (2)若r(A)≥r(B),则AX=0的解都是BX=0的解
  (3)若AX=0与BX=0同解,则r(A)-r(B)
  (4)若r(A)=r(B),则AX=0与BX=0同解
  以上命题正确的是().

A. (1)(2)
B. (1)(3)
C. (2)(4)
D. (3)(4)

查看答案
该试题由用户187****36提供 查看答案人数:25540 如遇到问题请联系客服
正确答案
该试题由用户187****36提供 查看答案人数:25541 如遇到问题请联系客服
热门试题
n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则(  )。 设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题①若Ax=0的解均是Bx=0的解,则rA≥rB;②若rA≥rB,则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则rA=rB;④若rA=rB,则Ax=0与Bx=0同解。以上命题中正确的是() 中国大学MOOC: 设A为n阶实矩阵,则齐次线性方程组AX=0与A’AX=0是否有相同的解? 设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系 设A是4阶矩阵,A*为A的伴随矩阵,若线性方程组Ax=0的基础解系中只有2个向量,则r(A*)=(  )。 设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:<br/>①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);<br/>②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;<br/>③若Ax=0与Bx=0同解,则秩(A)=秩(B);<br>④若秩(A)=秩(B)则Ax=0与Bx=0同解;<br>以上命题中正确的是() 设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:  ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);  ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;  ③若Ax=0与Bx=0同解,则秩(A)=秩(B);  ④若秩(A)=秩(B)则Ax=0与Bx=0同解;  以上命题中正确的是 设A,B都是,n阶矩阵,其中B是非零矩阵,且AB=O,则(). 设A,B都是,n阶矩阵,其中B是非零矩阵,且AB=O,则() 线性方程组Ax=0,若是A是n阶方阵,且R(A) 线性方程组Ax=0,若是A是n阶方阵,且R(A)() 线性方程组Ax=0,若是A是n阶方阵,且R() 有方程组只有唯一解,求 设A与B都是n阶正交矩阵,证明AB也是正交矩阵. 设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵。若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为(  )。 设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX(→)=0(→)的通解为____。 如果A为n阶非奇异矩阵,则可通过高斯消去法(及交换两行的初等变换)将原方程组化为三角方程组。?????() 设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明:向量组α,Aα,…,Ak-1α是线性无关的。 n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX=O有两个线性无关的解,则(  ). 设A、B都是n阶非零矩阵,且AB=0,则A和B的秩( ).
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位