主观题

设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ/∂z≠0,求du/dx。

查看答案
该试题由用户548****74提供 查看答案人数:1 如遇到问题请联系客服
正确答案
该试题由用户548****74提供 查看答案人数:2 如遇到问题请联系客服
热门试题
设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足条件:f'(x)=g(x),g(x)= f(x),f(0)=0,且f(x)+g(x)=2ex.(1)求F(x)所满足的一阶微分方程;(2)求出F(x)的表达式.   设z=f(x2-y2,exy),其中f具有连续二阶偏导数,求∂z/∂x,∂z/∂y。 设z=f(x,y),φ(x,y)=0,其中f和φ对x、y具有二阶连续偏导数且φy′≠0,求z对x的二阶导数。 设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。 设f(x),g(x)具有任意阶导数,且满足f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0。则(  )。 设f(x)具有任意阶导数,且f′(x)=[f(x)]2,则f(n)(x)=(  )。 设函数f(x)在点x=O的某邻域内具有连续的二阶导数,且f′(0)=f″(0)=0,则(  )。 设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。 设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。 设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值() 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上(  )。 设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0。证明:∃ξ∈(0,1)使(ξ-1)3f″(ξ)+2f′(ξ)=0。 设z=f(x+y,x/y,x),其中f具有连续二阶偏导数,求∂2z/(∂x∂y)。 设y=f(x)二阶可导,且,f′(1)=0,f″(1)>0,则必有(). 已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,f′(x)>0,f″(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明:a<x0<b。 设y=f(x2+a),其中f二阶可导,a为常数,则y"=()   设函数y=f(x)具有二阶导数,且了f′(x)<0,f"(x)<0,又△y=f(x+△x)-f(x),dy= f′(x)△x,则当△x>0时,有()   设f(x)二阶可导,且f′(x)>0,f″(x)>0,则当Δx>0时有(  )。 求函数f(x)=3cosx+4sinx的一阶导数为0的点。
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位