判断题

设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。

查看答案
该试题由用户185****16提供 查看答案人数:9838 如遇到问题请联系客服
正确答案
该试题由用户185****16提供 查看答案人数:9839 如遇到问题请联系客服
热门试题
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上(  )。 设y=f(x)在(a,6)内有二阶导数,且,f″>0,则曲线y=f(x)在(a,6)内(). 设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。 设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。 设函数y=f(x)具有二阶导数,且了f′(x)<0,f"(x)<0,又△y=f(x+△x)-f(x),dy= f′(x)△x,则当△x>0时,有()   设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内(  )。 设z=f(x,y),φ(x,y)=0,其中f和φ对x、y具有二阶连续偏导数且φy′≠0,求z对x的二阶导数。 设函数f(x)具有二阶连续导数,且f(x)>0,f"(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 设z=f(x2+y2),其中f具有二阶导数,则等于(). 若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内(  )。 设点(x0,f(x0))是曲线y=f(x)的拐点,且函数f(x)存在二阶导数,则f"(x0)=().   设y=f(x)二阶可导,且,f′(1)=0,f″(1)>0,则必有(). 函数y=f(x)在(a,6)内二阶可导,且f′(x)>0,f″(x)<0,则曲线y=f(x)在(a,6)内( ).《》( ) 设f(x)=e3x,则在x=0处的二阶导数,f"(0)=(  ) 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:  (Ⅰ)存在ξ∈(0,1),使得f"(ξ)=1;  (Ⅱ)存在η∈(-1,1),使得f"(η)+f"(η)=1. 设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,且f′(x)<0,f"(x)<0,则下列结论成立的是()   设函数y=f(x)在[0,a]上二阶可导,|f″(x)|≤M,且f(x)在(0,a)内取得最大值。证明:|f′(0)|+|f′(a)|≤Ma。 若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:() (2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)>0,f″(x)>0则在(-∞,0)内必有:() 设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位