单选题

设偶函数f(x)具有二阶连续导数,且f″(0)≠0,则x=0(  )。

A. 一定不是函数的驻点
B. 一定是函数的极值点
C. 一定不是函数的极值点
D. 不能确定是否为函数的极值点

查看答案
该试题由用户302****11提供 查看答案人数:19708 如遇到问题请联系客服
正确答案
该试题由用户302****11提供 查看答案人数:19709 如遇到问题请联系客服
热门试题
设函数φ(x)具有二阶连续导数且φ(0)=0,并且已知yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,则φ(x)=(  )。 设z=f(xy)/x+yφ(x+y),f、φ具有二阶连续导数,则∂2z/∂x∂y=____。 设z=f(xy)/x+yφ(x+y),f和φ具有二阶连续导数,则∂2z/∂x∂y=____。 设函数ψ(x)具有二阶连续导数,且ψ(0)=ψ′(0)=0,并已知yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则ψ(x)等于(  )。 设函数f(x),g(x)具有二阶导数,且g″(x)<0,g(x0)=a是g(x)的极值,则f(g(x))在x0取到极大值的一个充分条件是(  )。 设f(x)为偶函数,且二阶可导,f"(0)≠0,则下列结论正确的是()   设u=f(x+y,xz)有二阶连续偏导数,则∂2u/∂x∂z=(  )。 设函数y=f(x)具有二阶导数,且了f′(x)<0,f"(x)<0,又△y=f(x+△x)-f(x),dy= f′(x)△x,则当△x>0时,有()   设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。 设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。 设函数z=F(π/2-arctanx,xy),其中F有二阶连续偏导数,求∂2z/∂x2。 设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,f′(0)=g′(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是(  )。 设曲线积分∫L[f(x)-ex]sinydx-f(x)cosydy与路径无关,其中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于(  )。 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上(  )。 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dz/dx。 设y=f(x)在(a,6)内有二阶导数,且,f″>0,则曲线y=f(x)在(a,6)内(). 若在区间(a,b)内,f(x)的导数f’(x)<0,二阶导数f”(x)>0,则函数f(x)在该区间内()。 设函数fi(x)(i=1,2)具有二阶连续导数,且fi″(x0)<0(i=1,2),若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有(  )。 设f具有一阶连续导数,且y=ef(2sinx),则y′=().  
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位