登录/
注册
下载APP
帮助中心
首页
考试
APP
当前位置:
首页
>
查试题
>
设函数fi(x)(i=1,2)具有二阶连续导数,且fi″(x0)<0(i=1,2),若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有( )。
单选题
设函数fi(x)(i=1,2)具有二阶连续导数,且fi″(x0)<0(i=1,2),若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有( )。
A. f1(x)≤f2(x)≤g(x)
B. f2(x)≤f1(x)≤g(x)
C. f1(x)≤g(x)≤f2(x)
D. f2(x)≤g(x)≤f1(x)
查看答案
该试题由用户434****11提供
查看答案人数:21973
如遇到问题请
联系客服
正确答案
该试题由用户434****11提供
查看答案人数:21974
如遇到问题请
联系客服
搜索
热门试题
设函数f(x)具有二阶连续导数,且f(x)>0,f"(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设函数f(x)在点x=O的某邻域内具有连续的二阶导数,且f′(0)=f″(0)=0,则( )。
设f具有一阶连续导数,且y=e
f(2sinx)
,则y′=().
设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。
设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( )。
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dz/dx。
若二元函数z=z(x,y)的全微分dz=9x
3
y
5
dx+φ(x,y)dy,且其具有二阶连续偏导数,则 φ
x
(x,y)=().
消费函数的二阶导数是()的。
风险偏好者的效用函数具有一阶导数为正,二阶导数为负的性质。
设函数fi(x)(i=1,2)具有二阶连续导数,且fi″(x0)<0(i=1,2),若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有( )。
设函数y=y(x)由方程xef(y)=ey所确定,其中f有二阶导数,且f′≠1,求d2y/dx2。
设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。
设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。
设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值()
设u=f(x,y),v=F(x,y),其中f和F都是x和y的有一阶连续偏导数的函数。由此二式也确定了x和y都是u、v的有一阶连续偏导数的函数。证明:[(∂u/∂x)·(∂v/∂y)-(∂u/∂y)·(∂v/∂x)]·[(∂x/∂u)·(∂y/∂v)-(∂x/∂v)·(∂y/∂u)]=1。
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: (Ⅰ)存在ξ∈(0,1),使得f"(ξ)=1; (Ⅱ)存在η∈(-1,1),使得f"(η)+f"(η)=1.
称二阶导数的导数为三阶导数,n阶导数的导数为n+1阶导数.
设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=____。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
账号登录
短信登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了