主观题

映射f:A→B,若A中任意两个不同元素x1≠x2有f(x1)≠f(x2),则f是

查看答案
该试题由用户751****48提供 查看答案人数:42217 如遇到问题请联系客服
正确答案
该试题由用户751****48提供 查看答案人数:42218 如遇到问题请联系客服
热门试题
X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则(  )。 X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则(  ). 若f(x)为奇函数,且对任意实数x恒有f(x+3)-f(x-1)=0,则f(2)= 在F(x)中,f(x),g(x)是次数≤n的多项式,若在F中有n+1个不同的元素,c1,c2…使得f(ci)=g(ci),则f(x)=g(x)。 在F(x)中,f(x),g(x)是次数≤n的多项式,若在F中有n+1个不同的元素,c1,c2…使得f(ci)=g(ci),则f(x)=g(x).() 设f1(x),f2(x)是二阶线性齐次方程y″+p(x)y′+q(x)y=0的两个特解,则c1f1(x)+c2f2(x)(c1,c2是任意常数)是该方程的通解的充要条件为(  )。 如果X的分布函数为F(x), 则对任意实数x1 < x2 ,有P{ x1 < x2 }=F(x2) – F(x1)() 设f(x)在(a,b)内二阶可导,且f″(x)≥0,证明:对于(a,b)内任意两点x1、x2及0≤t≤1,有f[(1-t)x1+tx2]≤(1-t)f(x1)+tf(x2)。 设f(x)是[0,1]上的可导函数,且f′(x)有界。证明:存在M>0,使得对于任意x1,x2∈[0,1],有|f(x1)-f(x2)|≤M|x1-x2|。 设 f(x)是[0,1]上的可导函数,且厂 f"(x)有界。证明:存在 M>0,使得对于任意 x1,x2∈[0,1],有|f(x1)-f(x2)| ≤M|x1-x2|。 若f(x—1)=x2—1,则f'(x)等于()   若f(x-1)=x2-1,则f′(x)=()   若f(1- 2x)=x2+2x- 1,则f(x)=_____. 设近似值x1,x2满足?(x1)=0.05,?(x2)=0.005,那么?(x1x2)=( ) . 已知函数f(x)=lg(x+1)。 (1)若0f(1-2x)-f(x)1,求x的取值范围; (2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),求函数Y=g(x)(x∈[1,2])的反函数。 已知函数f(x)=lg(x+1)。 (1)若0<f(1-2x)-f(x)<1,求x的取值范围; (2)若g(x)9;g 2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),求函数y-=g(x)x∈[1,2])的反函数。 F[x]中,若f(x)+g(x)=1,则f(x+1)+g(x+1)=()。 F[x]中,若f(x)+g(x)=1,则f(x+1)+g(x+1)=()。 F[x]中,若f(x)+g(x)=1,则f(x+1)+g(x+1)=() 设F1(x),F2(x)都是分布函数,a>0,b>0是两个常数,且a+b=1。试证明:F(x)=aF1(x)+bF2(x)也是分布函数。
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位