单选题

已知函数f(x)=5x+bcosx,其中b为常数。那么“b=0”是“f(x)为奇函数”的( )。

A. 充分而不必要条件
B. 必要而不充分条件
C. 充分必要条件
D. 既不充分也不必要条件

查看答案
该试题由用户670****49提供 查看答案人数:2855 如遇到问题请联系客服
正确答案
该试题由用户670****49提供 查看答案人数:2856 如遇到问题请联系客服
热门试题
对Larmor公式f=r?B0的描述,错误的是() 已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,f′(x)>0,f″(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明:a<x0<b。 设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),证明:若f(x)不恒为常数,则至少存在一点ξ∈(a,b),使得f′(ξ)>0.   设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b) f(x)在闭区间[0,c]上连续,其导函数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0。(1)结合题干简述拉格朗日中值定理的内容并证明;(2)运用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c。 设F1(x),F2(x)都是分布函数,a>0,b>0是两个常数,且a+b=1。试证明:F(x)=aF1(x)+bF2(x)也是分布函数。 设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)在(a,b)() 已知f(x)是一次函数,且其图像过点A(-2,0),B(1,5),则f(x)=() 设函数f(x)在[a,b]连续,在(a,b)可导,f'(x)>0,若f(a)·f(b) 已知A={a,b,c},B={-1,0,1},f:A→B使得f(a)+f(b)+f(c)=0,则映射f的个数为()。 设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。 设函数f(x)在[a,b]上连续,满足f([a,b])∈[a,b]。证明:存在x0,∈[a,b],使得f(x0)=x0。 设函数f(x)在[a,b]上连续,在(a,b)可导,f"(x)>0,f(a)/f(b) 设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )。 设函数f(x)在[a,b]上连续,在(a,b)可导,f"(x)>0,f(a),(b) 已知偶函数f(x)在[-1,0]上是增函数,且最大值为5,那么f(x)在[0,1]上是(      ). 若f(x)是在(-∞,+∞)内可导的以l为周期的周期函数,则f′(ax+b)(a≠0,a、b为常数)的周期为( ) 设函数f(x)在[a,b]上连续,在(a,b)内可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)在 (a,b)内()   若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0(  )。 设函数f(x)在[a,b]上连续,在(a,b)可导,f’(x)>0,f(a)f(b)
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位