单选题

二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的(  )。

A. 充分条件
B. 必要条件
C. 充要条件
D. 以上都不是

查看答案
该试题由用户640****85提供 查看答案人数:18551 如遇到问题请联系客服
正确答案
该试题由用户640****85提供 查看答案人数:18552 如遇到问题请联系客服
热门试题
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ/∂z≠0,求du/dx。 设函数f(x)具有二阶连续导数,且f(x)>0,f"(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 二元函数z=f(x,y)在点(x0,y0)可微是其在该点偏导数存在的() z=(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件?() 设u=f(x,y),v=F(x,y),其中f和F都是x和y的有一阶连续偏导数的函数。由此二式也确定了x和y都是u、v的有一阶连续偏导数的函数。证明:[(∂u/∂x)·(∂v/∂y)-(∂u/∂y)·(∂v/∂x)]·[(∂x/∂u)·(∂y/∂v)-(∂x/∂v)·(∂y/∂u)]=1。 设二元函数F的两个偏导数F1′、F2′不同时为零,另一个二元函数u(x,y)满足F(∂u/∂x,∂u/∂y)=0(其中u(x,y)有二阶连续偏导数),证明:(∂2u/∂x2)·(∂2u/∂y2)=(∂2u/∂x∂y)2。 设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,f′(0)=g′(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是(  )。 函数f (x, y) 在点Po (xo, yo) 处有一阶偏导数是函数在该点连续的() 考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。 z=f(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件()? 若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微 若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微 若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微() 设函数φ(x)具有二阶连续导数且φ(0)=0,并且已知yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,则φ(x)=(  )。 设函数ψ(x)具有二阶连续导数,且ψ(0)=ψ′(0)=0,并已知yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则ψ(x)等于(  )。 已知二元函数f(x,y)在点(x0,y0)处偏导数存在,则fx(x0,y0)=0,fy(x0,y0)=0是函数f(x,y)在该点取得极值的()   函数处有一阶偏导数是函数在该点连续的() 若二元函数z=z(x,y)的全微分dz=9x3y5dx+φ(x,y)dy,且其具有二阶连续偏导数,则 φx(x,y)=().   函数f (x,y)在点处的一阶偏导数存在是该函数在此点可微分的()。 函数y=(x)在点x=0处的二阶导数存在,且"(0)=0,"(0)>0,则下列结论正确的是().
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位