登录/
注册
下载APP
帮助中心
首页
考试
APP
当前位置:
首页
>
查试题
>
学历类
>
统招专升本
>
高数(一)
>
设函数f(x)对任意x均满足f(x+1)=af(x),且f′(0)=b,其中a,b为非零常数,则()
单选题
设函数f(x)对任意x均满足f(x+1)=af(x),且f′(0)=b,其中a,b为非零常数,则()
A. f(x)在x=1处不可导
B. f(x)在x=1处可导,且f′(1)=a
C. f(x)在x=1处可导,且f′(1)=b
D. f(x)在x=1处可导,且f′(1)=ab
查看答案
该试题由用户906****68提供
查看答案人数:38875
如遇到问题请
联系客服
正确答案
该试题由用户906****68提供
查看答案人数:38876
如遇到问题请
联系客服
搜索
热门试题
设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则( )。
设函数f(x)满足f(x+Δx)-f(x)=2xf(x)Δx+ο(Δx)(Δx→0),且f(0)=2,则f(1)=
设函数f(x)满足f”(x)-3f'(x)+2f(x)=0,且在x=0处取得极值1,求函数f(x)的表达式.
设函数f(x)在[a,b]上连续且f(x)>0,则
设函数f(x)在[a,b]上连续且f(x)>0,则()
设函数f(x)在[a,b]上连续且f(x)>0,则( )
设函数f(x)在[a,b]上连续,满足f([a,b])∈[a,b]。证明:存在x0,∈[a,b],使得f(x0)=x0。
设函数f(x)满足关系式f"(x)+[f′(x)]
2
=-2,且f′(0)=0则()
设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内( )。
设函数f(x)满足f'(sin
2
x)=cos
2
x,且f(0)=0,则f(x)=()
设函数f (x)在(a, b)内可微,且≠0,则f(x)在(a,b)内()
设F1(x),F2(x)都是分布函数,a>0,b>0是两个常数,且a+b=1。试证明:F(x)=aF1(x)+bF2(x)也是分布函数。
已知函数f(x)的定义域为(-∞,+∞),对任意的x,y,有f(x+y))+f(x-y)=2f(x)f(y)成立,且f(0)≠0.求证: (1)f(0)=1; (2)函数f(x)是偶函数.
若f(x)为奇函数,且对任意实数x恒有f(x+3)-f(x-1)=0,则f(2)=
设函数f(x)在x=1处可导,且f"(1)=0,若f"(1)>0,则f(1)是()
设函数f(x)在(0,1)上可导且在[0,1]上连续,且f'(x)>0,f(0)<0,f(1)>0,则f(x)在(0,1)内()。
设f(x)是R上的可导函数,且f(x)>0。若f?(x)-3x2f(x)=0,且f(0)=1,求f(x)。
设 f(x)是 R 上的可导函数,且 f(x)>0。若 f"(x)-3x---2f(x)=0,且 f(0)=1,求 f(x)。
设f(x)是[0,1]上的可导函数,且f′(x)有界。证明:存在M>0,使得对于任意x1,x2∈[0,1],有|f(x1)-f(x2)|≤M|x1-x2|。
若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0( )。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
账号登录
短信登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了