主观题

设f(x),f′(x)在[a,b]上连续,f″(x)在(a,b)内存在,f(a)=f(b)=0,且存在c∈(a,b)使f(c)>0。证明:必∃ξ∈(a,b)使f″(ξ)<0。

查看答案
该试题由用户712****89提供 查看答案人数:43974 如遇到问题请联系客服
正确答案
该试题由用户712****89提供 查看答案人数:43975 如遇到问题请联系客服
热门试题
设f(x)在(-a,a)是连续的偶函数,且当0 设f(x)在(-a,a)是连续的偶函数,且当0() 设f(x)在(-a,a)是连续的偶函数,且当0() 设函数f(t)连续,t∈[-a,a],f(t)>0,且则在[-a,a]内必有() 设偶函数f(x)具有二阶连续导数,且f″(0)≠0,则x=0(  )。 设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,且f′(x)<0,f"(x)<0,则下列结论成立的是()   设f(x)在闭区间[0,c]上连续,其导数f′(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b)其中a,b满足条件0≤a≤b≤a+b≤c. 设f(x)在内连续,且f(x)>0,证明函数在(0,+∞)内为单调增函数。 设f(x)在(-a,a)是连续的偶函数,且当0<x<a时,f(x)<f(0),则有结论( )。 设f(x)是(-a,a)是连续的偶函数,且当0<x<a时,f(x)<f(0),则有结论() 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,k为正整数,求证:存在一点ξ∈(0,1),使得ξf′(ξ)+kf(ξ)=f′(ξ).   设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。 设f(x)在[0,π]上连续,在(0,π)内可导,证明:必∃ξ∈(0,π),使f′(ξ)+3f(ξ)cotξ=0。 设f(x)在[0,2]上连续,在(0,2)内可导,且f(0)+f(1)=4,f(2)=2,试证明必存在一点ξ∈(0,2),使f′(ξ)=0.   设函数f(x)在区间[0,2]上连续,在区间(0,2)内可导,且f(0)=f(2)=f(1)=2,证明:至少存在一点ξ∈(0,2),使得f′(ξ)=ξ.   设函数f(x)在点x=O的某邻域内具有连续的二阶导数,且f′(0)=f″(0)=0,则(  )。 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b)>0,f(a)·f[(a+b)/2]<0。试证:对任意实数k,∃ξ∈(a,b),使得f′(ξ)=kf(ξ)。 设在[0,+∞]上函数f(x)有连续导数,且f′(x)≥k>0,f(0) 设在[0,+∞]上函数f(x)有连续导数,且f′(x)≥k>0,f(0)<0,证明:在(0,+∞]内有且仅有一个零点。 设常数λ>0,且级数()
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位