登录/
注册
下载APP
帮助中心
首页
考试
APP
当前位置:
首页
>
查试题
>
设总体X~N(μ,σ^2),X1,X2,…,xn为总体的简单样本,S^2为样本方差,则D(S^2)=_______.
主观题
设总体X~N(μ,σ^2),X1,X2,…,xn为总体的简单样本,S^2为样本方差,则D(S^2)=_______.
查看答案
该试题由用户322****89提供
查看答案人数:19159
如遇到问题请
联系客服
正确答案
该试题由用户322****89提供
查看答案人数:19160
如遇到问题请
联系客服
搜索
热门试题
设总体X~N(u,σ2),基于来自总体X的容量为16的简单随机样本,测得样本均值x=31.645,样本方差S2=0.09,则总体均值μ的置信度为0.98的置信区间为()。
设 x1,x2,xn为样本观测值,经计算知nx 2 =64,
设总体X~N(u,σ2),基于来自总体X的容量为16的简单随机样本,测得样本均值图.png= 31.645,样本方差S2=0.09,则总体均值μ的置信度为0.98的置信区间为()。
设X1,…,Xn是取自总体X的容量为n的样本,总体均值E(X)=μ未知,μ的无偏估计是( ).
设样本X1,X2,…,Xn来自总体X~N(μ,σ2),其中μ和σ2均为未知参数,设随机变量L是关于μ的置信度1-α的置信区间的长度,求E(L2)。
设总体X~N(μ0,σ2),μ0为已知常数,(X1,X2,…,Xn)为来自正态总体X的样本,则检验假设H0:σ2=σ02;H1:σ2≠σ02的统计量是____;当H0成立时,服从____分布。
设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过1.5的概率
设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,Xn是取自总体X的样本,则λ的最大似然估计是( ).
设总体X的分布率为P{X=x}=(1-p)x-1p,x=1,2,…;X1,X2,…,Xn是来自X的样本,试求(1)p的矩估计量;(2)p的极大似然估计量。
设X1,…,Xn是取自正态总体N(μ,1)的样本,其中μ未知,μ的无偏估计是( ).
设总体X的分布率为P{X=x}=(1-p)x-1p,x=1,2,…;X1,X2,…,Xn是来自X的样本,试求: (1)p的矩估计量; (2)p的极大似然估计量。
从总体X~N(μ,σ2)中抽取一个样本容量为16的样本,μ和σ2均未知,试求: (1)P{S2/σ2≤2.041}; (2)D(S2)。
设总体X服从于分布f(x,λ)=e-|x|/λ/(2λ)(-∞<x<+∞)其中λ>0。若取得样本值X1,X2,…,Xn,试求: (1)E(|X|),E(|X2|); (2)参数λ的极大似然估计值λ(∧); (3)λ(∧)是否为参数A的无偏估计量?
设:-1、0、1、2、3、13是来自总体X的样本,则样本均值为( )
中国大学MOOC: 设有n维随机变量(X1,X2,…,Xn),其分布函数是指F(x1,x2,…,xn) =P{X1£x1,X2£x2,…,Xn£xn},其中x1,x2,…,xn,为任意实数.
设X1,X2,…,Xn相互独立且同服从分布B(1,p),Z=X1+X2+…+Xn,证明Z~B(n,p)。
已知样本X1,X2,…,Xn,其中μ2未知。下列表达式中,不是统计量的是( )。
设总体$X\sim N(\mu, \sigma^{2})$,? $X_{1}, X_{2},\cdots, X_{n} $为总体的样本, 以下结论正确的为(
设X1,…,Xn是取自正态总体N(μ,1)的样本,其中μ未知,下列μ的无偏估计中,最有效的是( ).
设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
账号登录
短信登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了