主观题

设总体X的分布率为P{X=x}=(1-p)x-1p,x=1,2,…;X1,X2,…,Xn是来自X的样本,试求(1)p的矩估计量;(2)p的极大似然估计量。

查看答案
该试题由用户269****23提供 查看答案人数:30742 如遇到问题请联系客服
正确答案
该试题由用户269****23提供 查看答案人数:30743 如遇到问题请联系客服
热门试题
设随机变量X1,X2,…,Xn相互独立,且均在区间[0,θ]上服从于均匀分布,设Y1=max{X1,X2,…Xn},Y2=min{X1,X2,…Xn},求E(Y1),E(Y2),D(Y1),D(Y2). 设随机变量X1,X2,…,Xn相互独立,且均在区间[0,θ]上服从于均匀分布,设Y1=max{X1,X2,…,Xn},Y2=min{X1,X2,…,Xn},求E(Y1),E(Y2),D(Y1),D(Y2)。 设总体X~N(μ,σ^2),X1,X2,…,xn为总体的简单样本,S^2为样本方差,则D(S^2)=_______. 设总体X~N(μ0,σ2),μ0为已知常数,(X1,X2,…,Xn)为来自正态总体X的样本,则检验假设H0:σ2=σ02;H1:σ2≠σ02的统计量是____;当H0成立时,服从____分布。 设X1,X2,...,Xn是来自几何分布P(X=k)=p(1-p)k-1,k=1,2,...,0<p<1,的样本,试求未知参数p的极大似然估计. 设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。 设 X1,X2,…,Xn 是来自总体N(m, s2)的样本,`X , S2分别为样本均值和样本方差,则有 设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,Xn是取自总体X的样本,则λ的最大似然估计是( ). 设总体X~N(μ0,σ2),μ0未知,X1,X2,…,Xn为来自正态总体X的样本,记X(_)为样本均值,S2为样本方差,对假设检验H0:σ≥2;H1:σ<2,应取检验统计量χ2为(  )。 设总体X服从于分布f(x,λ)=e-|x|/λ/(2λ)(-∞<x<+∞)其中λ>0。若取得样本值X1,X2,…,Xn,试求:  (1)E(|X|),E(|X2|);  (2)参数λ的极大似然估计值λ(∧);  (3)λ(∧)是否为参数A的无偏估计量? 设n为正整数,0<x<1,证明:xn(1-x)<1/(ne)。 设总体X~N(20,169),已知1x,2x,…,100x是来自X的样本。则样本均值的分布服从均值为20、方差为16.9的正态分布。 设X1,…,Xn是取自总体X的容量为n的样本,总体均值E(X)=μ未知,μ的无偏估计是( ). 设样本X1,X2,…,Xn来自总体X~N(μ,σ2),其中μ和σ2均为未知参数,设随机变量L是关于μ的置信度1-α的置信区间的长度,求E(L2)。 设集合A={x|x≥1} ,B={x|-1 设[X]补=1.X1X2X3X4,当满足时,X>-1/2成立 设[X]补=1.x1x2x3x4,当满足______时,X>-1/2成立 设0<x<1,证明:2/e<xx/(1-x)+x1/(1-x)<1。 设X与Y的联合分布为$P(X=-1,Y=0)=(1)/(10)$;$P(X=-1,Y=1)=(1)/(20)$;$P(X=-1,Y=2)=(7)/(20)$;$P(X=2,Y=0)=(3)/(10)$;$P(X=2,Y=1)=(1)/(10)$;$P(X=2,Y=2)=(1)/(10)$则有 已知x<0,且[x]原=x0.x1x2…xn,则[x]反可通过求得()
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位