登录/
注册
下载APP
帮助中心
首页
考试
APP
当前位置:
首页
>
查试题
>
证明方程a1/(x-λ1)+a2/(x-λ2)+a3/(x-λ3)=0在(λ1,λ2)及(λ2,λ3)内各有唯一实根。其中a1、a2、a3均为大于0的常数,λ1<λ2<λ3。
主观题
证明方程a1/(x-λ1)+a2/(x-λ2)+a3/(x-λ3)=0在(λ1,λ2)及(λ2,λ3)内各有唯一实根。其中a1、a2、a3均为大于0的常数,λ1<λ2<λ3。
查看答案
该试题由用户804****38提供
查看答案人数:26981
如遇到问题请
联系客服
正确答案
该试题由用户804****38提供
查看答案人数:26982
如遇到问题请
联系客服
搜索
热门试题
方程(x+2)(x-1)=x+2的解是()
已知关于x的方程x?-(k+4)x+4k =0(k≠0)的两实数根为x1.x2,若2/x1+2/x2=3,则K=___
曲线y=x3+2x-1在点M(1,2)处的切线方程是
已知关于x的方程x2-2(k-1)x+k2有两个实数根x1,x2。 (1)求k的取值范围; (2)若|x1-x2|=x1x2-1,求k的值。
设α(→)=(1,2,1)T,β(→)=(1,0.5,0)T,γ(→)=(0,0,8)T,A=α(→)β(→)T,B=β(→)Tα(→),求解方程组2B2A2X(→)=A4X(→)+B4X(→)+γ,其中X(→)=(x1,x2,x3)T。
如果方程lg2x+(lg2+lg3)lgx+lg2×lg3=0的两个根分别是x1,x2,那么x1·x2=( )
设f(x)在[a,b]上连续,在(a,b)内可微,若a≥0,证明在(a,b)内存在三个数x1、x2、x3,使f′(x1)=(b+a)f′(x2)/(2x2)=(b2+ab+a2)f′(x3)/(3x32)。
求一个可逆线性变换x(→)=Py(→)将f(x1,x2,x3)=x12+3x32+2x1x2+4x1x3+2x2x3化成标准形。
微分方程dy/dx=y/x-(1/2)(y/x)3满足y|x=1=1的特解为y=____。
设0<x<1,证明:2/e<xx/(1-x)+x1/(1-x)<1。
方程组 x+y+z=1 ? ? ? ? (1) x+2y+4z=5 ? ? ? ?(2) 2x+3y+6z=7 ? ? ? (3) 的图象是
设y1=x,y2=x+e2x,y3=x(1+e2x)是二阶常系数线性非齐次方程的特解,求该方程及其通解。
已知常数k≥ln2-1,证明:(x-1)(x-ln2x+2klnx-1)≥0。
判定二次型f(x1,x2,x3)=2x12+5x22+5x32+4x1x2-4x1x3-8x2x3的正定性。
若X1,X2,X3两两不相关,且D(X1)=1(i=1,2,3),则D(X1+X2+X3)=____.
设R3中的向量ξ(→)在基α(→)1=(1,-2,1)T,α(→)2=(0,1,1)T,α(→)3=(3,2,1)T下的坐标为(x1,x2,x3)T,它在基β(→)1、β(→)2、β(→)3下的坐标为(y1,y2,y3)T,且y1=x1-x2-x3,y2=-x1+x2,y3=x1+2x3,则由基β(→)1、β(→)2、β(→)3到基α(→)1、α(→)2、α(→)3的过渡矩阵P=____。
设R3中的向量ξ在基α1=(1,-2,1)T,α2=(0,1,1)T,α3=(3,2,1)T下的坐标为(x1,x2,x3)T,它在基β1、β2、β3下的坐标为(y1,y2,y3)T,且y1=x1-x2-x3,y2=-x1+x2,y3=x1+2x3,则由基β1、β2、β3到基α1、α2、α3的过渡矩阵p=____.
二次型f(x1,x2,x3)=λx21 (λ-1)λ22 (λ2 1)x23,当满足()时,是正定二次型。()
方程x
2
+2x-3=0的解集可表示为{-1,3}。
已知曲线y=x3-3x2-1,过点(1,-3)作其切线,求切线方程。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
账号登录
短信登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了