登录/
注册
下载APP
帮助中心
首页
考试
APP
当前位置:
首页
>
查试题
>
公元前3世纪,古希腊数学家欧几里得提出:“三角形内角之和等于180度。”19世纪德国数学家黎曼提出:“在球面上,三角形内角之和大于180度。”后来,俄国数学家罗巴切夫斯基又提出:“在凹面上,三角形内角之和小于180度。”这一认识过程说明
单选题
公元前3世纪,古希腊数学家欧几里得提出:“三角形内角之和等于180度。”19世纪德国数学家黎曼提出:“在球面上,三角形内角之和大于180度。”后来,俄国数学家罗巴切夫斯基又提出:“在凹面上,三角形内角之和小于180度。”这一认识过程说明
A. 真理具有客观性
B. 真理具有相对性
C. 真理具有绝对性
D. 真理具有唯一性
查看答案
该试题由用户885****38提供
查看答案人数:30805
如遇到问题请
联系客服
正确答案
该试题由用户885****38提供
查看答案人数:30806
如遇到问题请
联系客服
搜索
热门试题
“体操”一词出自公元前五世纪古希腊()
三角形闭合差为三角形三内角观测值之和与180°加球面角超之差。
观测三角形各内角3次,求得三角形闭合差分别为+8″,-10″和+2″,则三角形内角和的中误差为( )。
三角形的重心,就是三角形3个内角平分线的交点。
三角形三内角之和等于180度,这个命题不好。()
三角形内角和等于1800是欧几里德提出的重要定理。但后来科学家发现,在球形凸面上,三角形内角和大于1800。这表明()
在正曲率空间(如球面)中,三角形三内角之和().
在正曲率空间(如球面)中,三角形三内角之和().
黄金分割是由公元前6世纪古希腊的数学家毕达哥拉斯发现的,被公认为是最能引起美感的比例,其比例是()。
黄金分割是由公元前6世纪古希腊的数学家毕达哥拉斯发现的,被公认为是最能引起美感的比例。其比例是( )。
古希腊医生()早在公元前5世纪提出了四类型气质学说
就数学本身来讲,即使测量上万个三角形也无法证明“三角形内角和等于180°”,这说明了数学具有()
材料一人类认识和把握世界的过程,也就是追求真理的过程。我们可以用纸折叠的方式来检验在平面上三角形内角之和等于180度,不管我们以前有没有认识到这一点,它都是不以人的意志为转移的,是客观存在的。我们实践中获得了平面上三角形内角之和等于180度的真理性的认识。 材料二我们知道了在平面上三角形内角之和等于180度。19世纪初,德国数学家指出:在球形凸面上,三角形内角之和大于180度。由此,人们关于空间的观念发生了革命性的转变。我们在地球仪上随意选择三点构成三角形直观感悟内角之和的情况。可以看到赤道、经线90度和0度经线构成270度的角。 材料三 随着农林畜牧业的发展、土地丈量和利用的增多,使人们逐渐确立了三角形内角之和等于180度的认识。随着航海事业的发展和人们对球面认识的不断深入,这一认识的局限性逐渐暴露出来。 19世纪初,俄国数学家提出:在凹曲面上,三角形内角之和小于180度。 这个过程受到了什么因素的制约?
三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()
黄金分割是由公元前6世纪古希腊的数学家毕达哥拉斯发现的,被公认为是最能引起美感的比例。其比例是( )
一个三角形三个内角的度数比是2:3:5,这是()三角形
在平面中三角形内角和等于180度,在球面中三角形内角和大于180度,在凹面中三角形内角和小于180度,这说明()。
三角形一个外角小于与它相邻的内角,这个三角形是( )
在哪个几何体系中三角形三内角之和大于180度()
中国大学MOOC: 在几何学中,三角形内角之和( )
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
账号登录
短信登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了