主观题

设X1,X2,…,Xn是来自总体X的样本,则是( )

查看答案
该试题由用户359****82提供 查看答案人数:10580 如遇到问题请联系客服
正确答案
该试题由用户359****82提供 查看答案人数:10581 如遇到问题请联系客服
热门试题
设X1,…,Xn是取自总体X的容量为n的样本,总体均值E(X)=μ未知,μ的无偏估计是( ). 设样本X1,X2,…,Xn来自总体X~N(μ,σ2),其中μ和σ2均为未知参数,设随机变量L是关于μ的置信度1-α的置信区间的长度,求E(L2)。 设:-1、0、1、2、3、13是来自总体X的样本,则样本均值为( ) 设σ是总体X的标准差,X1, X2,..., Xn是它的样本,则样本标准差S是总体标准差σ的相合估计量 设总体X~N(μ0,σ2),μ0为已知常数,(X1,X2,…,Xn)为来自正态总体X的样本,则检验假设H0:σ2=σ02;H1:σ2≠σ02的统计量是____;当H0成立时,服从____分布。 设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过1.5的概率 设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,Xn是取自总体X的样本,则λ的最大似然估计是( ). 设 x1,x2,xn为样本观测值,经计算知nx 2 =64, 设总体X~N(20,169),已知1x,2x,…,100x是来自X的样本。则样本均值的分布服从均值为20、方差为16.9的正态分布。 设X1,X2,...,Xn是来自几何分布P(X=k)=p(1-p)k-1,k=1,2,...,0<p<1,的样本,试求未知参数p的极大似然估计. 设X1,…,Xn是取自正态总体N(μ,1)的样本,其中μ未知,μ的无偏估计是( ). 设X1,X2,…,Xn相互独立且同服从分布B(1,p),Z=X1+X2+…+Xn,证明Z~B(n,p)。 设总体X服从于分布f(x,λ)=e-|x|/λ/(2λ)(-∞<x<+∞)其中λ>0。若取得样本值X1,X2,…,Xn,试求:  (1)E(|X|),E(|X2|);  (2)参数λ的极大似然估计值λ(∧);  (3)λ(∧)是否为参数A的无偏估计量? 设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。 设总体X服从0-1分布,X1,…,X5是来自总体的样本,Xbar是样本均值,则下列各种选项中的量不是统计量的是() 中国大学MOOC: 设有n维随机变量(X1,X2,…,Xn),其分布函数是指F(x1,x2,…,xn) =P{X1£x1,X2£x2,…,Xn£xn},其中x1,x2,…,xn,为任意实数. 设总体$X\sim N(\mu, \sigma^{2})$,? $X_{1}, X_{2},\cdots, X_{n} $为总体的样本, 以下结论正确的为( 设X1,…,Xn是来自0-1分布的样本,此总体中值为1的概率为p, 则样本均值的期望和方差分别为_______和_______ 中国大学MOOC: 设随机变量X1, X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1, X2,…,Xn(). 设随机变量X1,X2,…,Xn相互独立,且均在区间[0,θ]上服从于均匀分布,设Y1=max{X1,X2,…Xn},Y2=min{X1,X2,…Xn},求E(Y1),E(Y2),D(Y1),D(Y2).
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位