单选题

函数y=f(x)满足f(1)=2,f″(1)=0,且当x<1时,f″(x)<0;当x>l时,f″(x)>O,则有().

A. x=l是驻点
B. x=l是极值点
C. x=l是拐点
D. 点(1,2)是拐点

查看答案
该试题由用户698****19提供 查看答案人数:23918 如遇到问题请联系客服
正确答案
该试题由用户698****19提供 查看答案人数:23919 如遇到问题请联系客服
热门试题
已知f(x)是定义在R上的奇函数,且当x≥0时,f(x)=log3(1+x),则f(-2)=()   设f(x)是[0,1]上的可导函数,且f′(x)有界。证明:存在M>0,使得对于任意x1,x2∈[0,1],有|f(x1)-f(x2)|≤M|x1-x2|。 若二次函数f(x)是偶函数,且满足f(-1)=-1,f(0)=0,则f(x)的表达式是(). 设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于(  ) 设函数f(x)满足f(x+Δx)-f(x)=2xf(x)Δx+ο(Δx)(Δx→0),且f(0)=2,则f(1)= 设 f(x)是[0,1]上的可导函数,且厂 f"(x)有界。证明:存在 M>0,使得对于任意 x1,x2∈[0,1],有|f(x1)-f(x2)| ≤M|x1-x2|。 设函数,f(x)在[a,b]上连续,且F/(x)=f(x),有一点x0∈(a,b)使,f(x0)=0,且当a≤x≤x0时,f(x)>0;当x0<x≤b时,f(x)<0,则f(x)与x=a,x=b,x轴围成的平面图形的面积为()。 已知a>0且a≠1,函数f(x)=x²/2,(x>0)
(1)当a=2时,求f(x)单调区间
(2)要使y=f(x)与y=1有有且仅有两个交点,求a取值范围
已知函数式f(x)是奇函数,当x>0时,f(x)=x2+2x,则f(-1)的值为()   设函数f(x)在x=0可导且f(0)=1,又设f(x)满足函数方程f(x+1)=2f(x),求f′(n),其中n是整数。 设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。 设函数f(x)满足f”(x)-3f'(x)+2f(x)=0,且在x=0处取得极值1,求函数f(x)的表达式.   如果函数f(x)当x→x0时极限存在,则函数f(x)在点x0处(  )。 设函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x2-x,则f(-1)=(      ) 设函数f(x)={x+1,当0≤x 已知函数f(x)是定义在R上的奇函数,当x∈(-0,0)时,f(x)=2x³+x²,则f(2)=()   已知函数f(x)=lg(x+1)。 (1)若0f(1-2x)-f(x)1,求x的取值范围; (2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),求函数Y=g(x)(x∈[1,2])的反函数。 已知函数f(x)=lg(x+1)。 (1)若0<f(1-2x)-f(x)<1,求x的取值范围; (2)若g(x)9;g 2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),求函数y-=g(x)x∈[1,2])的反函数。 设f(x)二阶可导,且f′(x)>0,f″(x)>0,则当Δx>0时有(  )。 已知函数f(x)=Inx+ax+bx(其中ab为常数且a≠0)在x=1处取得极值。(1)当a=1时,求f(x)的单调区间;
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位