判断题

用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x));结论:∃x(R(x)∧Z(x))。(1)∃x(Q(x)∧Z(x))P(2)Q(c)∧Z(c)ES(1)(3)∀x(Q(x)→R(x))P(4)Q(c)→R(c)US(3)(5)Q(c)T(2)I

查看答案
该试题由用户422****68提供 查看答案人数:44948 如遇到问题请联系客服
正确答案
该试题由用户422****68提供 查看答案人数:44949 如遇到问题请联系客服
购买搜题卡会员须知|联系客服
会员须知|联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App

    只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索

    支付方式

     

     

     
    首次登录享
    免费查看答案20
    登录成功
    首次登录已为您完成账号注册,
    可在【个人中心】修改密码或在登录时选择忘记密码
    账号登录默认密码:手机号后六位