登录/
注册
下载APP
帮助中心
首页
考试
APP
当前位置:
首页
>
查试题
>
有8支足球队参加单淘汰制比赛,需要进行的场次及轮次是()
单选题
有8支足球队参加单淘汰制比赛,需要进行的场次及轮次是()
A. 7场3轮
B. 4场3轮
C. 8场3轮
D. 7场2轮
查看答案
该试题由用户439****29提供
查看答案人数:37566
如遇到问题请
联系客服
正确答案
该试题由用户439****29提供
查看答案人数:37567
如遇到问题请
联系客服
搜索
热门试题
淘汰制比赛场次计算公式为________________________________________
在有13个足球队参加的比赛中。若采用淘汰共需()场就可决出冠军。
简述单淘汰制的优缺点
简述单淘汰制的优缺点
教学设计题:请认真阅读下述材料,并按要求作答。问题:16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行,请问一共要进行多少场比赛才能产生一支冠军队?解法1:按照比赛进程,第一轮16支球队进行8场比赛,淘汰8支球队;第二轮,首轮晋级的8支球队进行4场比赛,淘汰4支球队;第三轮,再次晋级的4支球队进行2场比赛,淘汰2支球队;第四轮,2支球队进行决赛,产生1支冠军队。所以,一共要进行15(8+4+2+1)场比赛,才能产生1支冠军队解法2:匈牙利数学家路莎·佩特曾说:"数学家往往不是对问题进行正面的攻击,而是不断地将它变形,甚至把它转化为已经得到解决的问题。"据此,由16支球队产生1支冠军队就要淘汰15支球队,每淘汰1支球队就要进行1场比赛。所以,一共要进行15(16-1)场比赛,才能产生1支冠军队。上述两种解法的思维路向是什么?
教学设计题: 请认真阅读下述材料,并按要求作答。 问题:16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行,请问一共要进行多少场比赛才能产生一支冠军队? 解法1:按照比赛进程,第一轮16支球队进行8场比赛,淘汰8支球队;第二轮,首轮晋级的8支球队进行4场比赛,淘汰4支球队;第三轮,再次晋级的4支球队进行2场比赛,淘汰2支球队;第四轮,2支球队进行决赛,产生1支冠军队。所以,一共要进行15(8+4+2+1)场比赛,才能产生1支冠军队 解法2:匈牙利数学家路莎·佩特曾说:"数学家往往不是对问题进行正面的攻击,而是不断地将它变形,甚至把它转化为已经得到解决的问题。"据此,由16支球队产生1支冠军队就要淘汰15支球队,每淘汰1支球队就要进行1场比赛。所以,一共要进行15(16-1)场比赛,才能产生1支冠军队。 上述两种解法的思维路向是什么?
教学设计题: 请认真阅读下述材料,并按要求作答。 问题:16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行,请问一共要进行多少场比赛才能产生一支冠军队? 解法1:按照比赛进程,第一轮16支球队进行8场比赛,淘汰8支球队;第二轮,首轮晋级的8支球队进行4场比赛,淘汰4支球队;第三轮,再次晋级的4支球队进行2场比赛,淘汰2支球队;第四轮,2支球队进行决赛,产生1支冠军队。所以,一共要进行15(8+4+2+1)场比赛,才能产生1支冠军队 解法2:匈牙利数学家路莎·佩特曾说:"数学家往往不是对问题进行正面的攻击,而是不断地将它变形,甚至把它转化为已经得到解决的问题。"据此,由16支球队产生1支冠军队就要淘汰15支球队,每淘汰1支球队就要进行1场比赛。所以,一共要进行15(16-1)场比赛,才能产生1支冠军队。 第二种解法所反映的数学思想方法是什么?
教学设计题:请认真阅读下述材料,并按要求作答。问题:16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行,请问一共要进行多少场比赛才能产生一支冠军队?解法1:按照比赛进程,第一轮16支球队进行8场比赛,淘汰8支球队;第二轮,首轮晋级的8支球队进行4场比赛,淘汰4支球队;第三轮,再次晋级的4支球队进行2场比赛,淘汰2支球队;第四轮,2支球队进行决赛,产生1支冠军队。所以,一共要进行15(8+4+2+1)场比赛,才能产生1支冠军队解法2:匈牙利数学家路莎·佩特曾说:"数学家往往不是对问题进行正面的攻击,而是不断地将它变形,甚至把它转化为已经得到解决的问题。"据此,由16支球队产生1支冠军队就要淘汰15支球队,每淘汰1支球队就要进行1场比赛。所以,一共要进行15(16-1)场比赛,才能产生1支冠军队。依据拟定的教学目标,设计课堂教学的导入环节并简要说明理由。
教学设计题:请认真阅读下述材料,并按要求作答。问题:16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行,请问一共要进行多少场比赛才能产生一支冠军队?解法1:按照比赛进程,第一轮16支球队进行8场比赛,淘汰8支球队;第二轮,首轮晋级的8支球队进行4场比赛,淘汰4支球队;第三轮,再次晋级的4支球队进行2场比赛,淘汰2支球队;第四轮,2支球队进行决赛,产生1支冠军队。所以,一共要进行15(8+4+2+1)场比赛,才能产生1支冠军队解法2:匈牙利数学家路莎·佩特曾说:"数学家往往不是对问题进行正面的攻击,而是不断地将它变形,甚至把它转化为已经得到解决的问题。"据此,由16支球队产生1支冠军队就要淘汰15支球队,每淘汰1支球队就要进行1场比赛。所以,一共要进行15(16-1)场比赛,才能产生1支冠军队。如指导高年级小学生学习该数学思想方法,试拟定教学目标。
140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则有一队不用比赛直接进人下—轮。问夺冠的球队至少要参加几场比赛?
在有13个足球队比赛中,若采用淘汰共需()场就可决出冠军。
有5支队参加足球比赛,采用单循环制,其比赛场次为10场()
有5支球队参加足球比赛,若采用单循环制需()场比赛可决出冠军
足球比赛中常用的竞赛方法有循环制和淘汰制两种。
足球比赛中常用的竞赛方法有循环制和淘汰制两种()
公司举办第一届羽毛球赛,共有32名选手报名单人赛,采用输一场即被淘汰的单淘汰制。共需安排比赛的场次是( )。
有8个篮球队参加单淘汰比赛,共有( )
在“希望杯”足球赛中,共有5支小足球队参赛。如果每两支球队比赛一场,一共要比赛()场。
请认真阅读下述材料,并按要求作答。 问题: 16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行,请问一共要进行多少场比赛才能产生一支冠军队? 解法1: 按照比赛进程,第一轮16支球队进行8场比赛,淘汰8支球队;第二轮,晋级的8支球队进行4场比赛,淘汰4支球队;第三轮,再次晋级的4支球队进行2场比赛,淘汰2支球队;第四轮,2支球队进行决赛,产生1支冠军队。所以,一共要进行15(8+4+2+1)场比赛,才能产生1支冠军队。 解法2: 匈牙利数学家路莎.佩特曾说数学家往往不是对问题进行正面的攻击,而是不断地将它变形,甚至把它转化为已经得到解决的问题。”据此,由16支球队产生1支冠军队就要淘汰15支球队,每淘汰1支球队就要进行1场比赛。所以,一共要进行15(16-I)场比赛,才能产生1支冠军队。 问题: (1)上述两种解法的思维路向是什么? (2)第二种解法所反映的数学思想方法是什么? (3)如指导高年段小学生学习该数学思想方法,试拟定教学目标。(15分) (4)依据拟定的教学目标,设计课堂教学的导入环节并简要说明理由。(15分)
中国国家足球队2002年首次参加世界杯比赛
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
账号登录
短信登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了