登录/
注册
下载APP
帮助中心
首页
考试
APP
当前位置:
首页
>
查试题
>
如果同时否定“必然p”和“必然非p”,则()。
单选题
如果同时否定“必然p”和“必然非p”,则()。
A. 违反同一律
B. 违反矛盾律
C. 违反排中律
D. 不违反逻辑规律
查看答案
该试题由用户867****85提供
查看答案人数:10254
如遇到问题请
联系客服
正确答案
该试题由用户867****85提供
查看答案人数:10255
如遇到问题请
联系客服
搜索
热门试题
出头教育: “必然p”与“不必然非p”之间的关系应该是( )。
并非必然(p∧q)等于可能(p∧非q)。
并非必然(p∧q)等于可能(p∧非q)()
如果肯定p并且非q,而否定若p则q,则()的要求。
如果A与B互斥,且P(A)>0,P(B)>0,则A与B必然相互独立。()
并非可能(p或者q)等于“必然非p或者q”。
并非可能(p或者q)等于“必然非p或者q”()
“不必然非p”与“可能非p”之间的关系应该是()
“不必然非P”与“可能非P”之间的关系应该是
以“只有p,才q且r”和“非P”为前提,可必然推出结论()。
出头教育: “不必然非p”与“可能非P”之间的关系应该是( )。
如果否定p∧q而肯定p∨q,则()。
“必然非p”与“不可能p”之间的关系应该是()
以"只有P才q或r"和"非P"为前提,可必然推出的结论是()。
以“必然P”为前提,可必然推出
如果P,则Q,如果P则r,非q或者r,非p,这是()结构
如果P,则Q,如果P则r,非q或者r,非p,这是()结构
判断“只有必然A,才可能B”与“如果可能非A,则必然非B”之间具有()关系。
已知事件A的概率P(A)=0.6,U为必然事件,则P(A+U)=1,P(AU)=()
以“必然P”为前提,可必然地推出()、()、()
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
账号登录
短信登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了