登录/
注册
下载APP
帮助中心
首页
考试
APP
当前位置:
首页
>
查试题
>
使用FFT算法计算两有限长序列的线性卷积,则需要调用()次FFT算法。
单选题
使用FFT算法计算两有限长序列的线性卷积,则需要调用()次FFT算法。
A. 1
B. 2
C. 3
D. 4
查看答案
该试题由用户652****31提供
查看答案人数:38921
如遇到问题请
联系客服
正确答案
该试题由用户652****31提供
查看答案人数:38922
如遇到问题请
联系客服
搜索
热门试题
为提高计算效率,在Matlab中采用FFT函数来计算互相关函数,请问需要调用几次FFT/IFFT函数 ?
设序列x(n)是一长度为32的有限长序列(0≤n≤31),序列h(n)是一长度为64的有限长序列(0≤n≤63),记x(n)与h(n)的线性卷积y(n)=x(n)*h(n),则y(n)的长度为()
23点序列采用基2FFT算法,应至少补零到()
已知序列x(n)的长度为130点,序列y(n)的长度为170点,若计算它们的256点圆周卷积,试分析结果中相当于线性卷积的范围是
序列的卷积和与两序列的前后次序有关。
采用按时间抽取的基-2FFT算法计算N=1024点DFT,需要计算__次复数加法,需要__次复数乘法
试分析DIT-FFT算法与DIF-FFT算法的异同
序列x1(n)的长度为4,序列x2(n)的长度为3,则它们线性卷积的长度是( ),5点圆周卷积的长度是 ( )
时域抽取法基2 FFT算法中不能实现原位计算
对于线性移不变系统,其输出序列的傅里叶变换等于输入序列的傅里叶变换与系统频率响应的卷积。()
在基2DIT-FFT运算中通过不断地将长序列的DFT分解成短序列的DFT,最后达到2点DFT来降低运算量。若有一个64点多的序列进行基2DIT-FFT运算,需要分解几次
DFT和DFS有密切关系,因为有限长序列可以看成周期序列的(____),而周期序列可以看成有限长序列的(____)
利用基2DIT-FFT算法计算1024点DFT,需要蝶形的级数和每级蝶形数分别为()
在Frame容器中使用FlowLayout管理布局时,若要设定紧凑排列,则需要调用下列 ______方法。
中国大学MOOC: DFT与DFS有密切关系,因为有限长序列可以看成周期序列的( )?,而周期序列可以看成有限长序列的( )。
将离散傅里叶反变换IDFT的公式___改为__就可调用FFT例程(子程序)计算IDFT
计算机算法是指解决问题的有限运算序列,它具备______和足够的信息。
线性表是具有n个()的有限序列()
线性表是具有N个的有限序列
线性表是具有n个()的有限序列。
购买搜题卡
会员须知
|
联系客服
免费查看答案
购买搜题卡
会员须知
|
联系客服
关注公众号,回复验证码
享30次免费查看答案
微信扫码关注 立即领取
恭喜获得奖励,快去免费查看答案吧~
去查看答案
全站题库适用,可用于聚题库网站及系列App
只用于搜题看答案,不支持试卷、题库练习 ,下载APP还可体验拍照搜题和语音搜索
支付方式
首次登录享
免费查看答案
20
次
账号登录
短信登录
获取验证码
立即登录
我已阅读并同意《用户协议》
免费注册
新用户使用手机号登录直接完成注册
忘记密码
登录成功
首次登录已为您完成账号注册,
可在
【个人中心】
修改密码或在登录时选择忘记密码
账号登录默认密码:
手机号后六位
我知道了