2025年成考专升本《高等数学二》每日一练试题06月15日
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。() </p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202502/1767b2a325cd130.jpg" /></p><p class="introTit">单选题</p><p>1、已知<img src="https://img2.meite.com/questions/202212/06638f0628e1f57.png" />,若函数<img src="https://img2.meite.com/questions/202212/06638f0636d5bb9.png" />,则y'(1)等于().</p><ul><li>A:-2</li><li>B:-1</li><li>C:1</li><li>D:2</li></ul><p>答 案:B</p><p>解 析:根据函数积的求导法则<img src="https://img2.meite.com/questions/202212/06638f06535dc45.png" />,有<img src="https://img2.meite.com/questions/202212/06638f066023188.png" />,所以<img src="https://img2.meite.com/questions/202212/06638f06704c777.png" /></p><p>2、设f(x)为连续函数,则<img src="https://img2.meite.com/questions/202408/1966c2a896dea23.png" />等于()。
</p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1966c2a8a0c4a3c.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/1966c2a8a5b8773.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/1966c2a8aa5a45d.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1966c2a8ad8817e.png' /></li></ul><p>答 案:B</p><p>解 析:本题考查考生对微分、积分的基础知识和换元积分法的掌握情况。 <img src="https://img2.meite.com/questions/202408/1966c2a8b290392.png" />
<img src="https://img2.meite.com/questions/202408/1966c2a8b7a747a.png" />请考生注意:由于这种题考查的都是基本概念和基本方法,所以是历年“专升本”考试中常见的典型试题,熟练地掌握这类题的解法是十分重要的。
</p><p class="introTit">主观题</p><p>1、求一个正弦曲线与x轴所围成图形的面积(只计算一个周期的面积).</p><p>答 案:解:取从0~2π的正弦曲线如图<img src="https://img2.meite.com/questions/202212/0763903d20af21a.png" />,设所围图形面积为S,则<img src="https://img2.meite.com/questions/202212/0763903cddd57ab.png" /><img src="https://img2.meite.com/questions/202212/0763903ce9b5e60.png" /><img src="https://img2.meite.com/questions/202212/0763903cf62e7d0.png" /><img src="https://img2.meite.com/questions/202212/0763903d056e610.png" />注意到图形面积是对称的,可直接得出<img src="https://img2.meite.com/questions/202212/0763903d341c7a8.png" />。</p><p>2、求函数<img src="https://img2.meite.com/questions/202212/0863914cd03d2f4.png" />在条件x+2y=7下的极值.</p><p>答 案:解:设<img src="https://img2.meite.com/questions/202212/0863914cf02a1ed.png" />令<img src="https://img2.meite.com/questions/202212/0863914d0ad7119.png" /><img src="https://img2.meite.com/questions/202212/0863914d1281819.png" />由式(1)与式(2)解得5x=4y代入式(3)得x=2,y=<img src="https://img2.meite.com/questions/202212/0863914d24d7b42.png" />,所以<img src="https://img2.meite.com/questions/202212/0863914d2e8e231.png" />为极值.</p><p class="introTit">填空题</p><p>1、若<img src="https://img2.meite.com/questions/202212/07639034345b695.png" />则a=().</p><p>答 案:1</p><p>解 析:<img src="https://img2.meite.com/questions/202212/076390344195c28.png" />,所以a=1.</p><p>2、设函数f(x)=x<sup>2</sup>-2x+4,曲线y=f(x)在(x0,f(x0))处的切线与直线y=x-1平行,则x0=</p><p>答 案:<img src="https://img2.meite.com/questions/202404/22662626d517bc6.png" /></p><p>解 析:本题考查了导数的几何意义的知识点 f’(x)=2x-2,故f’(x<sup>0)</sup>=2x<sup>0</sup>-2,由于切线与直线y=x-1平行,故f’(x<sup>0</sup>)=1,得x<sup>0</sup>=<img src="https://img2.meite.com/questions/202404/22662626dee8095.png" />
</p><p class="introTit">简答题</p><p>1、设函数y=y(x)是由方程cos(xy)=x+y所确定的隐函数,求函数曲线y=y(x)过点(0,1)的切线方程。
</p><p>答 案:本题是一道典型的综合题,考查的知识点是隐函数的求导计算和切线方程的求法。 <img src="https://img2.meite.com/questions/202408/1966c2af8393b49.png" /><img src="https://img2.meite.com/questions/202408/1966c2af8b46d27.png" />
</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1966c2af75dd02b.png" /></p><p>2、<img src="https://img2.meite.com/questions/202408/1966c304929bff3.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1966c304968b610.png" /></p>