2025年成考专升本《高等数学一》每日一练试题06月02日
<p class="introTit">单选题</p><p>1、幂级数<img src="https://img2.meite.com/questions/202212/01638855e766b24.png" />(式中a为正常数)()。</p><ul><li>A:绝对收敛</li><li>B:条件收敛</li><li>C:发散</li><li>D:收敛性与a有关</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638855f5913b8.png" />是p=2的p级数,从而知其收敛,可知<img src="https://img2.meite.com/questions/202212/0163885606765d3.png" />收敛,故<img src="https://img2.meite.com/questions/202212/01638856144c862.png" />绝对收敛。</p><p>2、<img src="https://img2.meite.com/question/import/2d2b988af24248857366568869cc60d1.png" /></p><ul><li>A:2/3</li><li>B:1</li><li>C:3/2</li><li>D:3</li></ul><p>答 案:C</p><p>3、设y=sinx,则y''=()。</p><ul><li>A:-sinx</li><li>B:sinx</li><li>C:-cosx</li><li>D:cosx</li></ul><p>答 案:A</p><p>解 析:y=sinx,则y'=cosx,<img src="https://img2.meite.com/questions/202211/1763759a8324718.png" />。</p><p class="introTit">主观题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202211/166374add1c6145.png" />的通解.</p><p>答 案:解:原方程对应的齐次微分方程为<img src="https://img2.meite.com/questions/202211/166374ade8112f4.png" />特征方程为<img src="https://img2.meite.com/questions/202211/166374adf9e847c.png" />特征根为x<sub>1</sub>=-1,x<sub>2</sub>=3,<br />齐次方程的通解为<img src="https://img2.meite.com/questions/202211/166374ae1b2107f.png" /><br />设原方程的特解为<img src="https://img2.meite.com/questions/202211/166374ae3374b9e.png" />=A,代入原方程可得<img src="https://img2.meite.com/questions/202211/166374ae434e613.png" />=-1。<br />所以原方程的通解为<img src="https://img2.meite.com/questions/202211/166374ae5b9e010.png" />(C<sub>1</sub>,C<sub>2</sub>为任意常数)</p><p>2、将函数<img src="https://img2.meite.com/questions/202211/176375acbfe6f24.png" />展开成x的幂级数,并指出其收敛区间</p><p>答 案:解:因为<img src="https://img2.meite.com/questions/202211/176375acd243164.png" />所以<img src="https://img2.meite.com/questions/202211/176375ace684eb8.png" />其中5x∈(-1,1),得收敛区间<img src="https://img2.meite.com/questions/202211/176375ad137c097.png" /></p><p>3、计算<img src="https://img2.meite.com/questions/202211/2963856bdd987de.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856bf06efe8.png" />。</p><p class="introTit">填空题</p><p>1、过点M(1,2,-1)且与平面<img src="https://img2.meite.com/questions/202212/0163881f75e91dc.png" />垂直的直线方程为()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163881f8240a4c.png" /></p><p>解 析:由于直线与平面x-2y+4z=0垂直,可取直线方向向量为(1,-2,4),因此所求直线方程为<img src="https://img2.meite.com/questions/202212/0163881f8e4796b.png" /></p><p>2、微分方程y'+4y=0的通解为()。</p><p>答 案:y=Ce<sup>-4x</sup></p><p>解 析:将微分方程分离变量,得<img src="https://img2.meite.com/questions/202212/0163886de4c0350.png" />,等式两边分别积分,得<img src="https://img2.meite.com/questions/202212/0163886df7364ae.png" /></p><p>3、若二元函数z=arctan(x<sup>2</sup>+y<sup>2</sup>),则<img src="https://img2.meite.com/questions/202212/03638aec2349ca4.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638aec2ec500c.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638aec3aae1ef.png" /><img src="https://img2.meite.com/questions/202212/03638aec4aecf64.png" />。</p><p class="introTit">简答题</p><p>1、设y=y(x)由方程x<sup>2</sup>+2y<sup>3</sup>+2xy+3y-x=1确定,求y’。
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1566bda94aedcc0.png" /></p><p>解 析:本题考查的知识点为隐函数求导法。 <img src="https://img2.meite.com/questions/202408/1566bda955bbd83.png" />
</p>