2025年成考专升本《高等数学一》每日一练试题05月09日
<p class="introTit">单选题</p><p>1、极限<img src="https://img2.meite.com/questions/202307/2464bdf1755ed09.png" />等于()。</p><ul><li>A:5</li><li>B:<img src='https://img2.meite.com/questions/202211/2863847c806bcbe.png' /></li><li>C:3</li><li>D:0</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/2863847c92afe5e.png" />。</p><p>2、设<img src="https://img2.meite.com/questions/202212/03638ae3c7717cc.png" />在x=-1处连续,则a=()。</p><ul><li>A:-2</li><li>B:-1</li><li>C:0</li><li>D:2</li></ul><p>答 案:A</p><p>解 析:f(x)在x=-1处连续,则<img src="https://img2.meite.com/questions/202212/03638ae3dd8f7ce.png" />,<img src="https://img2.meite.com/questions/202212/03638ae3ee8b185.png" />故<img src="https://img2.meite.com/questions/202212/03638ae4065b1c7.png" />。</p><p>3、设函数f(x)=sinx,则不定积分<img src="https://img2.meite.com/questions/202211/3063871b6f765fe.png" />()。</p><ul><li>A:sinx+C</li><li>B:cosx+C</li><li>C:-sinx+C</li><li>D:-cosx+C</li></ul><p>答 案:A</p><p>解 析:由不定积分性质<img src="https://img2.meite.com/questions/202211/3063871b85e59c6.png" /></p><p class="introTit">主观题</p><p>1、求由曲线y=x2(x≥0),直线y=1及y轴围成的平面图形的面积.<img src="https://img2.meite.com/questions/202211/16637483c8c4c2b.png" /></p><p>答 案:解:y=x<sup>2</sup>(x≥0),y=1及y轴围成的平面图形D如图所示.其面积为<img src="https://img2.meite.com/questions/202211/16637483e6158df.png" /></p><p>2、计算二重积分<img src="https://img2.meite.com/questions/202212/03638af10c1bd16.png" />,其中D是x<sup>2</sup>+y<sup>2</sup>≤1,x≥0,y≥0所围的平面区域.</p><p>答 案:解:D的图形见下图中阴影部分。<img src="https://img2.meite.com/questions/202212/03638af134a3609.png" />在极坐标系下D满足0≤<img src="https://img2.meite.com/questions/202212/03638af14d96d51.png" />≤<img src="https://img2.meite.com/questions/202212/03638af15506ed3.png" />,0≤r≤1,且x<sup>2</sup>+y<sup>2</sup>=(rcos<img src="https://img2.meite.com/questions/202212/03638af14d96d51.png" />)<sup>2</sup>+(rsin<img src="https://img2.meite.com/questions/202212/03638af14d96d51.png" />)<sup>2</sup>=r<sup>2</sup>,故<img src="https://img2.meite.com/questions/202212/03638af19233229.png" />。</p><p>3、设<img src="https://img2.meite.com/questions/202211/166374afc293c27.png" />,求<img src="https://img2.meite.com/questions/202211/166374afcf46756.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374afe188e20.png" /></p><p class="introTit">填空题</p><p>1、幂级数<img src="https://img2.meite.com/questions/202212/03638afdc30dda6.png" />的收敛半径是()。</p><p>答 案:1</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638afdd15d629.png" />,<img src="https://img2.meite.com/questions/202212/03638afde99c63a.png" />。</p><p>2、设f(x)=3<sup>x</sup>,g(x)=x<sup>3</sup>,则<img src="https://img2.meite.com/questions/202212/03638afbe35c739.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638afbf104955.png" />·1n3</p><p>解 析:g(x)=x<sup>3</sup>,g'(x)=3x<sup>2</sup>,则<img src="https://img2.meite.com/questions/202212/03638afc2482958.png" />=f'(3x<sup>2</sup>),注意等号右端的含义为f(<img src="https://img2.meite.com/questions/202212/03638afc46bb9ed.png" />)在<img src="https://img2.meite.com/questions/202212/03638afc5095882.png" />=3x<sup>2</sup>处的导数,而f(x)=3<sup>x</sup>,即f(<img src="https://img2.meite.com/questions/202212/03638afc46bb9ed.png" />)=<img src="https://img2.meite.com/questions/202212/03638afc82ae020.png" />,则<img src="https://img2.meite.com/questions/202212/03638afc910e655.png" />=<img src="https://img2.meite.com/questions/202212/03638afc82ae020.png" />ln3,所以<img src="https://img2.meite.com/questions/202212/03638afcab92f99.png" /></p><p>3、过点M<sub>0</sub>(1,-2,0)且与直线<img src="https://img2.meite.com/questions/202212/0163881f355e9f9.png" />垂直的平面方程为()。</p><p>答 案:3(x-1)-(y+2)+x=0(或3x-y+z=5)</p><p>解 析:因为直线的方向向量s=(3,-1,1),且平面与直线垂直,所以平面的法向量<img src="https://img2.meite.com/questions/202212/0163881f580333e.png" />,由点法式方程有平面方程为:3(x-1)-(y+2)+(z-0)=0,即3(x-1)-(y+2)+z=0。</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bf0d30a52bc.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf0d35651e2.png" /></p>