2025年成考专升本《高等数学一》每日一练试题04月17日

聚题库
04/17
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202211/176375ae3458f62.png" />=()。</p><ul><li>A:3</li><li>B:2</li><li>C:1</li><li>D:0</li></ul><p>答 案:C</p><p>解 析:x<sup>2</sup>+1在(-∞,∞)都是连续的,函数在连续区间的极限,可直接代入求得,<img src="https://img2.meite.com/questions/202211/176375ae7100201.png" />=0+1=1。</p><p>2、设y=sinx,则y''=()。</p><ul><li>A:-sinx</li><li>B:sinx</li><li>C:-cosx</li><li>D:cosx</li></ul><p>答 案:A</p><p>解 析:y=sinx,则y'=cosx,<img src="https://img2.meite.com/questions/202211/1763759a8324718.png" />。</p><p>3、设函数y=f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),曲线f(x)在(a,b)内平行于x轴的切线()。</p><ul><li>A:仅有一条</li><li>B:至少有一条</li><li>C:不存在</li><li>D:不一定存在</li></ul><p>答 案:B</p><p>解 析:由罗尔定理可知,至少存在一个<img src="https://img2.meite.com/questions/202211/296385cee9dc149.png" />,使得<img src="https://img2.meite.com/questions/202211/296385cef72c36e.png" />.而<img src="https://img2.meite.com/questions/202211/296385cf051f22f.png" />表示函数在<img src="https://img2.meite.com/questions/202211/296385cf120a755.png" />处的切线的斜率,所以曲线f(x)在(a,b)内平行于x轴的切线至少有一条。</p><p class="introTit">主观题</p><p>1、求曲线y=x<sup>2</sup>在点(a,a<sup>2</sup>)(a<1)的一条切线,使由该切线与x=0、x=1和y=x<sup>2</sup>所围图形的面积最小。</p><p>答 案:解:设所求切线的切点为(a,b),见下图,<img src="https://img2.meite.com/questions/202212/01638814257361c.png" />则b=a<sup>2</sup>,<img src="https://img2.meite.com/questions/202212/016388143d3fc16.png" />,切线方程为y-b=2a(x-a),y=2ax-2a<sup>2</sup>+b=2ax-a<sup>2</sup>。设对应图形面积为A,则<img src="https://img2.meite.com/questions/202212/01638814689e85a.png" /><br />令<img src="https://img2.meite.com/questions/202212/0163881476e033e.png" />,则<img src="https://img2.meite.com/questions/202212/01638814851e37c.png" />,令<img src="https://img2.meite.com/questions/202212/0163881492513cb.png" />。当a<<img src="https://img2.meite.com/questions/202212/01638814a227100.png" />时,f'(a)<0;当a><img src="https://img2.meite.com/questions/202212/01638814a227100.png" />时,f'(a)>0,故<img src="https://img2.meite.com/questions/202212/0163881536b8640.png" />为f(a)的最小值点,切线方程为:y=x-<img src="https://img2.meite.com/questions/202212/01638815675a0c3.png" />。</p><p>2、将函数f(x)=sinx展开为<img src="https://img2.meite.com/questions/202212/03638b021cef4a0.png" />的幂级数.</p><p>答 案:解:由于<img src="https://img2.meite.com/questions/202212/03638b022dd7c53.png" />若将<img src="https://img2.meite.com/questions/202212/03638b0243cdc49.png" />看成整体作为一个新变量,则套用正、余弦函数的展开式可得<img src="https://img2.meite.com/questions/202212/03638b025783538.png" />从而有<img src="https://img2.meite.com/questions/202212/03638b026d1e787.png" />其中<img src="https://img2.meite.com/questions/202212/03638b02803fbc0.png" />(k为非负整数)。</p><p>3、若<img src="https://img2.meite.com/questions/202211/29638573f1efd7c.png" />,求a与b的值。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/29638573ff75e0e.png" />,又x<img src="https://img2.meite.com/questions/202211/296385740b2d59e.png" />3,分母x-3<img src="https://img2.meite.com/questions/202211/2963857413e8a5c.png" />0;所以<img src="https://img2.meite.com/questions/202211/29638574334fb45.png" />,得9+3a+b=0,b=-9-3a,则<img src="https://img2.meite.com/questions/202211/2963857453496ab.png" />(9+3a)=(x-3)[x+(3+a)],故<img src="https://img2.meite.com/questions/202211/2963857471d3120.png" />a=0,b=-9。</p><p class="introTit">填空题</p><p>1、过点M(1,2,3)且与平面2x-y+z=0平行的平面方程为()。</p><p>答 案:2x-y+z=3</p><p>解 析:因为已知平面与所求平面平行,取已知平面的法线向量(2,-1,1)即为所求平面法线向量.由平面的点法式方程可知所求平面为2(x-1)-(y-2)+(z-3)=0,即2x-y+z=3。</p><p>2、<img src="https://img2.meite.com/questions/202408/1666bef96694a39.png" />  </p><p>答 案:0</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bef96ac1517.png" /></p><p>3、<img src="https://img2.meite.com/questions/202211/296385675962fc3.png" />=()。</p><p>答 案:1</p><p>解 析:<img src="https://img2.meite.com/questions/202211/296385676b1b812.png" />。</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bf0631827ee.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf0635b4d43.png" /></p>
相关题库