2025年高职单招《数学(中职)》每日一练试题03月01日
<p class="introTit">单选题</p><p>1、若点A在直线a上,直线a在平面α内,点B在α内,则下列表述正确的是()
</p><ul><li>A:<img src='https://img2.meite.com/questions/202409/1366e3e48b77dd0.png' /></li><li>B:<img src='https://img2.meite.com/questions/202409/1366e3e497eb6e0.png' /></li><li>C:<img src='https://img2.meite.com/questions/202409/1366e3e49f37946.png' /></li><li>D:<img src='https://img2.meite.com/questions/202409/1366e3e4a67fc0a.png' /></li></ul><p>答 案:B</p><p>解 析:由题意得<img src="https://img2.meite.com/questions/202409/1366e3ee2f097d3.png" /></p><p>2、直线2x-y+2=0与圆x<sup>2</sup>+y<sup>2</sup>+4x-6y-7=0交于M,N两点,则|MN|=()</p><ul><li>A:<img src='https://img2.meite.com/questions/202409/1966eb927f37443.png' /></li><li>B:<img src='https://img2.meite.com/questions/202409/1966eb9285d6682.png' /></li><li>C: <img src='https://img2.meite.com/questions/202409/1966eb928c51e5c.png' /></li><li>D:<img src='https://img2.meite.com/questions/202409/1966eb929410861.png' /></li></ul><p>答 案:D</p><p>解 析:由x<sup>2</sup>+y<sup>2</sup>+4x-6y-7=0得(x+ 2)<sup>2</sup>+(y-3)<sup>2</sup>= 20,所以圆心为(-2,3),半径为<img src="https://img2.meite.com/questions/202409/1966eba088c0a0f.png" />.又圆心(-2,3)到直线2x-y+2=0的距离<img src="https://img2.meite.com/questions/202409/1966eba09e3c9d2.png" />,所以<img src="https://img2.meite.com/questions/202409/1966eba0a87f7dd.png" /></p><p>3、已知双曲线<img src="https://img2.meite.com/questions/202409/2166ee2a60a9061.png" />的一条渐近线与直线2x+y+3=0垂直,则该双曲线的离心率为()
</p><ul><li>A:<img src='https://img2.meite.com/questions/202409/2166ee2a675eb25.png' /></li><li>B:<img src='https://img2.meite.com/questions/202409/2166ee2a6ed3340.png' /></li><li>C:<img src='https://img2.meite.com/questions/202409/2166ee2a760502f.png' /></li><li>D:<img src='https://img2.meite.com/questions/202409/2166ee2a7c12b73.png' /></li></ul><p>答 案:A</p><p>解 析:易知双曲线<img src="https://img2.meite.com/questions/202409/2166ee2d4e048fc.png" />的渐近线方程为<img src="https://img2.meite.com/questions/202409/2166ee2d571c733.png" />,直线2x+y+3=0,即y=-2x-3的斜率为-2.由题意知直线<img src="https://img2.meite.com/questions/202409/2166ee2d6d217e6.png" />与直线y=-2x-3垂直,所以<img src="https://img2.meite.com/questions/202409/2166ee2d785aa34.png" />,所以双曲线的离心率<img src="https://img2.meite.com/questions/202409/2166ee2d7f9b1e5.png" /></p><p class="introTit">主观题</p><p>1、已知<img src="https://img2.meite.com/questions/202501/1167822ff243cf5.png" /></p><p>答 案:方法一:矢量图表示法 矢量图表示法如图所示。<img src="https://img2.meite.com/questions/202501/1167822ff89fe55.png" /><img src="https://img2.meite.com/questions/202501/1167822ffb0aba3.png" />
方法二:矢量表示法<img src="https://img2.meite.com/questions/202501/116782300184954.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202409/1366e3aff07aaa2.png" /><img src="https://img2.meite.com/questions/202409/1366e3affb6a19c.png" /><img src="https://img2.meite.com/questions/202409/1366e3affff2ae2.png" /></p><p class="introTit">填空题</p><p>1、在<img src="https://img2.meite.com/questions/202409/1266e2a058ada6c.png" />的展开式中,x<sup>3</sup>的系数为8,则实数k的值为() </p><p>答 案:2</p><p>解 析:易知<img src="https://img2.meite.com/questions/202409/1266e2a058ada6c.png" />的展开式的通项<img src="https://img2.meite.com/questions/202409/1266e2a79585233.png" />令6-r=3,解得r=3,所以x<sup>3</sup>的系数是<img src="https://img2.meite.com/questions/202409/1266e2a7b63f873.png" />,解得k=2.</p><p>2、已知{a<sub>n</sub>}为等差数列,且a<sub>4</sub>+a<sub>8</sub>+a<sub>10</sub>=50,则a<sub>2</sub>+2a<sub>10</sub>=()</p><p>答 案:50</p><p>解 析:由数列{an}为等差数列得a<sub>4</sub>+a<sub>8</sub>+a<sub>10</sub>=a<sub>2</sub>+a<sub>8</sub>+a<sub>12</sub>=a<sub>2</sub>+2a<sub>10</sub>=50</p><p>3、若函数<img src="https://img2.meite.com/questions/202501/06677b77ec9c2a3.png" />则<img src="https://img2.meite.com/questions/202501/06677b77f150cd6.png" />= _______</p><p>答 案:1</p><p>解 析:解法一:
由<img src="https://img2.meite.com/questions/202501/06677b77f774d1e.png" />得<img src="https://img2.meite.com/questions/202501/06677b77fb171be.png" />
∴<img src="https://img2.meite.com/questions/202501/06677b77ff42d12.png" />
解法二:
由<img src="https://img2.meite.com/questions/202501/06677b780471001.png" />得x=1
∴<img src="https://img2.meite.com/questions/202501/06677b78085f5ac.png" /></p><p class="introTit">简答题</p><p>1、已知数列{an}是等差数列,a1=1,a3=3.
(1)求数列{an}的通项公式;
(2)设b<sub>n</sub>=(-1)<sup>n</sup>a<sub>n</sub>,数列{b<sub>n</sub>}的前n项和为T<sub>n</sub>,求T<sub>1</sub><sub>00</sub></p><p>答 案:<img src="https://img2.meite.com/questions/202409/1866ea3b778423a.png" /> <img src="https://img2.meite.com/questions/202409/1866ea3b80b8bb9.png" /></p>