2025年成考专升本《高等数学一》每日一练试题02月08日

聚题库
02/08
<p class="introTit">单选题</p><p>1、曲线y=x<sup>2</sup>+5x+4在点(-1,0)处切线的斜率为()。</p><ul><li>A:2</li><li>B:-2</li><li>C:3</li><li>D:-3</li></ul><p>答 案:C</p><p>解 析:点(-1,0)在曲线y=x<sup>2</sup>+5x+4上,y'=2x+5,<img src="https://img2.meite.com/questions/202211/296385c5441b029.png" />,由导数的几何意义可知,曲线y=x<sup>2</sup>+5x+4在点(-1,0)处切线的斜率为3。</p><p>2、若<img src="https://img2.meite.com/questions/202211/3063871b92b3cb7.png" />,则<img src="https://img2.meite.com/questions/202211/3063871b9e3abc0.png" />=()。</p><ul><li>A:F(e<sup>-x</sup>)+C</li><li>B:F(e<sup>x</sup>)+C</li><li>C:<img src='https://img2.meite.com/questions/202211/3063871cea8fb80.png' />+C</li><li>D:-F(e<sup>-x</sup>)+C</li></ul><p>答 案:D</p><p>解 析:由<img src="https://img2.meite.com/questions/202211/3063871d071a52d.png" />,可得<img src="https://img2.meite.com/questions/202211/3063871d166a7d0.png" />。</p><p>3、微分方程<img src="https://img2.meite.com/questions/202211/176375b0e4ba59e.png" />的阶数为()。</p><ul><li>A:1</li><li>B:2</li><li>C:3</li><li>D:4</li></ul><p>答 案:B</p><p>解 析:所给方程含有未知函数y的最高阶导数是2阶,因此方程的阶数为2。</p><p class="introTit">主观题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202211/166374add1c6145.png" />的通解.</p><p>答 案:解:原方程对应的齐次微分方程为<img src="https://img2.meite.com/questions/202211/166374ade8112f4.png" />特征方程为<img src="https://img2.meite.com/questions/202211/166374adf9e847c.png" />特征根为x<sub>1</sub>=-1,x<sub>2</sub>=3,<br />齐次方程的通解为<img src="https://img2.meite.com/questions/202211/166374ae1b2107f.png" /><br />设原方程的特解为<img src="https://img2.meite.com/questions/202211/166374ae3374b9e.png" />=A,代入原方程可得<img src="https://img2.meite.com/questions/202211/166374ae434e613.png" />=-1。<br />所以原方程的通解为<img src="https://img2.meite.com/questions/202211/166374ae5b9e010.png" />(C<sub>1</sub>,C<sub>2</sub>为任意常数)</p><p>2、求曲线y=x<sup>2</sup>在点(a,a<sup>2</sup>)(a<1)的一条切线,使由该切线与x=0、x=1和y=x<sup>2</sup>所围图形的面积最小。</p><p>答 案:解:设所求切线的切点为(a,b),见下图,<img src="https://img2.meite.com/questions/202212/01638814257361c.png" />则b=a<sup>2</sup>,<img src="https://img2.meite.com/questions/202212/016388143d3fc16.png" />,切线方程为y-b=2a(x-a),y=2ax-2a<sup>2</sup>+b=2ax-a<sup>2</sup>。设对应图形面积为A,则<img src="https://img2.meite.com/questions/202212/01638814689e85a.png" /><br />令<img src="https://img2.meite.com/questions/202212/0163881476e033e.png" />,则<img src="https://img2.meite.com/questions/202212/01638814851e37c.png" />,令<img src="https://img2.meite.com/questions/202212/0163881492513cb.png" />。当a<<img src="https://img2.meite.com/questions/202212/01638814a227100.png" />时,f'(a)<0;当a><img src="https://img2.meite.com/questions/202212/01638814a227100.png" />时,f'(a)>0,故<img src="https://img2.meite.com/questions/202212/0163881536b8640.png" />为f(a)的最小值点,切线方程为:y=x-<img src="https://img2.meite.com/questions/202212/01638815675a0c3.png" />。</p><p>3、设f(x,y)为连续函数,交换二次积分<img src="https://img2.meite.com/questions/202212/01638852a69d533.png" />的积分次序。</p><p>答 案:解:由题设知<img src="https://img2.meite.com/questions/202212/01638852b7b66e1.png" />中积分区域的图形应满足1≤x≤e,0≤y≤lnx,因此积分区域的图形见下图中阴影部分<img src="https://img2.meite.com/questions/202212/01638852ea3b3a1.png" />.由y=lnx,有x=e<sup>y</sup>。所以<img src="https://img2.meite.com/questions/202212/0163885309c8a22.png" />。</p><p class="introTit">填空题</p><p>1、级数<img src="https://img2.meite.com/questions/202212/0163885cdc1d329.png" />的收敛半径是()。</p><p>答 案:</p><p>解 析:<img src="https://img2.meite.com/questions/202212/0163885cecaebbb.png" /></p><p>2、设函数z=f(x,y)可微,(x<sub>0</sub>,y<sub>0</sub>)为其极值点,则<img src="https://img2.meite.com/questions/202212/016388498de7e9f.png" />()。</p><p>答 案:</p><p>解 析:由二元函数极值的必要条件可知,若点(x<sub>0</sub>,y<sub>0</sub>)为z=f(x,y)的极值点,且<img src="https://img2.meite.com/questions/202212/01638849c619804.png" />,<img src="https://img2.meite.com/questions/202212/01638849d213fcb.png" />在点(x<sub>0</sub>,y<sub>0</sub>)处存在,则必有<img src="https://img2.meite.com/questions/202212/01638849ef2fd80.png" />,由于z=f(x,y)可微,则偏导数必定存在,因此有<img src="https://img2.meite.com/questions/202212/0163884a076e17b.png" />。</p><p>3、设<img src="https://img2.meite.com/questions/202211/1663749668dfd94.png" />,则dy=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/166374967ad0538.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/1663749691999a6.png" /></p><p class="introTit">简答题</p><p>1、求微分方程y”-y’-2y=3e<sup>x</sup>的通解。  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1566bdc22239d25.png" /> <img src="https://img2.meite.com/questions/202408/1566bdc2273eaf2.png" />  </p><p>解 析:本题考查的知识点为求解二阶线性常系数非齐次微分方程。 <img src="https://img2.meite.com/questions/202408/1566bdc22d481d7.png" />  </p>
相关题库