2025年成考专升本《高等数学一》每日一练试题01月30日

聚题库
01/30
<p class="introTit">单选题</p><p>1、已知<img src="https://img2.meite.com/questions/202211/3063871e8c3c821.png" />,则<img src="https://img2.meite.com/questions/202211/3063871ea1389f4.png" />()。</p><ul><li>A:-cosx+C</li><li>B:cosx+C</li><li>C:<img src='https://img2.meite.com/questions/202211/3063871eb2afdac.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/3063871ebc4801d.png' /></li></ul><p>答 案:C</p><p>解 析:已知<img src="https://img2.meite.com/questions/202211/3063871ecc7110c.png" />,在此式两侧对cosx求积分,得<img src="https://img2.meite.com/questions/202211/3063871eded0d64.png" />有<img src="https://img2.meite.com/questions/202211/3063871ef7dbe12.png" /></p><p>2、下列命题中正确的有()。  </p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1666beee5dbb517.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/1666beee61969bf.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/1666beee6512209.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1666beee686db8d.png' /></li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666beee6dec07d.png" /> <img src="https://img2.meite.com/questions/202408/1666beee7183d66.png" />  </p><p>3、级数<img src="https://img2.meite.com/questions/202212/0163885515b244e.png" />(k为非零常数)()。</p><ul><li>A:发散</li><li>B:绝对收敛</li><li>C:条件收敛</li><li>D:收敛性与k有关</li></ul><p>答 案:C</p><p>解 析:级数各项取绝对值得级数<img src="https://img2.meite.com/questions/202212/016388552b2e6d2.png" />为发散级数;由莱布尼茨判别法可知<img src="https://img2.meite.com/questions/202212/016388553fc0466.png" />收敛,故<img src="https://img2.meite.com/questions/202212/0163885551ad5f1.png" />为条件收敛。</p><p class="introTit">主观题</p><p>1、设z=xy<sup>2</sup>+e<sup>y</sup>cosx,求<img src="https://img2.meite.com/questions/202211/16637481f262f04.png" />.</p><p>答 案:解:z=xy<sup>2</sup>+e<sup>y</sup>cosx,<img src="https://img2.meite.com/questions/202211/1663748277d6f76.png" />=2xy+e<sup>y</sup>cosx。</p><p>2、求<img src="https://img2.meite.com/questions/202211/2963856ce27e6d8.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856cf281662.png" /><img src="https://img2.meite.com/questions/202211/2963856d0bd9b82.png" /></p><p>3、<img src="https://img2.meite.com/question/import/38122ef5ca6e8921ffc7a5a4cc1b3783.png" /></p><p>答 案:<img src="https://img2.meite.com/question/import/5dba69a2724d60821a1a3610ad6ceb11.png" /></p><p class="introTit">填空题</p><p>1、曲线f(x)=x<sup>3</sup>-x上点(1,0)处的切线方程为()。</p><p>答 案:y=2x-2</p><p>解 析:<img src="https://img2.meite.com/questions/202211/306386b708c68ff.png" />,f'(1)=2,故曲线在点(1,0)处的切线方程为y-0=2(x-1),即y=2x-2。</p><p>2、<img src="https://img2.meite.com/questions/202408/1666bf05e527c81.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf05e91163b.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bf05ece4a1d.png" /></p><p>3、<img src="https://img2.meite.com/questions/202211/166374969fb8701.png" />=()。</p><p>答 案:5sinx+C</p><p>解 析:<img src="https://img2.meite.com/questions/202211/166374976f80278.png" /></p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666befa05ba1da.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666befa0a31852.png" /></p>
相关题库