2025年成考专升本《高等数学一》每日一练试题01月19日

聚题库
01/19
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202212/03638af8271f344.png" />=()。</p><ul><li>A:4+3ln2</li><li>B:2+3ln2</li><li>C:4-3ln2</li><li>D:2-3ln2</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638af8353f8f9.png" />。</p><p>2、设f(x)=<img src="https://img2.meite.com/questions/202211/29638564a7b9a5d.png" />在<img src="https://img2.meite.com/questions/202211/29638564b6ea729.png" />上连续,且<img src="https://img2.meite.com/questions/202211/29638564ca6d938.png" />,则常数a,b满足()。</p><ul><li>A:a<0,b≤0</li><li>B:a>0,b>0</li><li>C:a<0,b<0</li><li>D:a≥0,b<0</li></ul><p>答 案:D</p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/29638564e44f0ae.png" />在<img src="https://img2.meite.com/questions/202211/29638564fd5e758.png" />上连续,所以<img src="https://img2.meite.com/questions/202211/296385650bc10f1.png" />因<img src="https://img2.meite.com/questions/202211/296385652266523.png" />则a≥0,又因为<img src="https://img2.meite.com/questions/202211/296385653c413a3.png" />所以<img src="https://img2.meite.com/questions/202211/296385654a65f73.png" />时,必有<img src="https://img2.meite.com/questions/202211/296385655769208.png" />因此应有b<0。</p><p>3、<img src="https://img2.meite.com/questions/202211/176375ee555a4d2.png" />()。</p><ul><li>A:0</li><li>B:<img src='https://img2.meite.com/questions/202211/176375ee6ae0900.png' /></li><li>C:1</li><li>D:<img src='https://img2.meite.com/questions/202211/176375ee78ccbb5.png' /></li></ul><p>答 案:A</p><p>解 析:当x→∞时,<img src="https://img2.meite.com/questions/202211/176375ee8ccebeb.png" /><img src="https://img2.meite.com/questions/202211/176375ee99d7a67.png" />为有界函数,有界变量与无穷小之积为无穷小,故<img src="https://img2.meite.com/questions/202211/176375eeb697646.png" />。</p><p class="introTit">主观题</p><p>1、设z=<img src="https://img2.meite.com/questions/202212/01638850ce9c0cf.png" />,求<img src="https://img2.meite.com/questions/202212/01638850db3ea82.png" />。</p><p>答 案:解:令u=x+2y,v=x<sup>2</sup>+y<sup>2</sup>,根据多元函数的复合函数求导法则得<img src="https://img2.meite.com/questions/202212/0163885103b1d1a.png" /><img src="https://img2.meite.com/questions/202212/016388511424444.png" /></p><p>2、设D是由直线y=x与曲线y=x<sup>3</sup>在第一象限所围成的图形.(1)求D的面积S;<br />(2)求D绕x轴旋转一周所得旋转体的体积V。</p><p>答 案:解:由<img src="https://img2.meite.com/questions/202211/176375ac457995e.png" />,知两曲线的交点为(0,0),(1,1)和(-1,-1),则(1)<img src="https://img2.meite.com/questions/202211/176375ac638d915.png" /><img src="https://img2.meite.com/questions/202211/176375ac7126036.png" /><img src="https://img2.meite.com/questions/202211/176375ac7f4fd17.png" />(2)<img src="https://img2.meite.com/questions/202211/176375ac93635b5.png" /><img src="https://img2.meite.com/questions/202211/176375aca0d2fc7.png" /><img src="https://img2.meite.com/questions/202211/176375acb04c7c5.png" /></p><p>3、将f(x)=sin3x展开为x的幂级数,并指出其收敛区间。</p><p>答 案:解:由于<img src="https://img2.meite.com/questions/202212/016388627d9a6c4.png" />可知<img src="https://img2.meite.com/questions/202212/016388628ad87e5.png" /><img src="https://img2.meite.com/questions/202212/016388629c34e26.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202212/016388043ccb5a3.png" />=()。</p><p>答 案:</p><p>解 析:被积函数x<sup>3</sup>+sinx为奇函数,且积分区域关于原点对称,由定积分的对称性得<img src="https://img2.meite.com/questions/202212/01638804565adcd.png" />=0。</p><p>2、设y=x+sinx,则y’=()  </p><p>答 案:1+cosx</p><p>解 析:<img src="https://img2.meite.com/questions/202405/166645bc839b966.png" /></p><p>3、幂级数<img src="https://img2.meite.com/questions/202212/0163885e81d16c9.png" />的收敛半径是()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163885e8d29a3a.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/0163885e99c41cd.png" /><img src="https://img2.meite.com/questions/202212/0163885ea7f2ed3.png" />,当<img src="https://img2.meite.com/questions/202212/0163885eb6f2f57.png" />时,级数收敛,故收敛区间为<img src="https://img2.meite.com/questions/202212/0163885ec622071.png" />,收敛半径<img src="https://img2.meite.com/questions/202212/0163885eceec350.png" />。</p><p class="introTit">简答题</p><p>1、设F(x)为f(x)的一个原函数,且f(x)=xInx,求F(x)。  </p><p>答 案:由题设可得知:<img src="https://img2.meite.com/questions/202408/1566bdc259d3189.png" /></p><p>解 析:本题考查的知识点为两个:原函数的概念和分部积分法。</p>
相关题库