2024年成考专升本《高等数学一》每日一练试题12月30日
<p class="introTit">单选题</p><p>1、微分方程<img src="https://img2.meite.com/questions/202212/0163886beeb2e19.png" />的特征根为()。</p><ul><li>A:0,4</li><li>B:-2,2</li><li>C:-2,4</li><li>D:2,4</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202212/0163886c004e62b.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202408/1666bef8e4666d7.png" />()。
</p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1666bef8e7c7ad9.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/1666bef8eb8a209.png' /></li><li>C:π</li><li>D:2π</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bef8f981d9b.png" /><img src="https://img2.meite.com/questions/202408/1666bef8fdd1f8e.png" /></p><p>3、<img src="https://img2.meite.com/questions/202408/1666bf0b0661ff6.png" />()。
</p><ul><li>A:3</li><li>B:6</li><li>C:9</li><li>D:9e</li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bf0b0d76e72.png" /></p><p class="introTit">主观题</p><p>1、设<img src="https://img2.meite.com/questions/202211/166374ab053a051.png" />,求y'.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374acf55bc71.png" /></p><p>2、设z=f(x,y)是由方程<img src="https://img2.meite.com/questions/202212/016388512702c56.png" />所确定,求<img src="https://img2.meite.com/questions/202212/0163885132b6538.png" />。</p><p>答 案:解:由<img src="https://img2.meite.com/questions/202212/0163885140e7d04.png" />得全微分方程:<img src="https://img2.meite.com/questions/202212/0163885152cf27a.png" />化简得<img src="https://img2.meite.com/questions/202212/016388516e89256.png" /><img src="https://img2.meite.com/questions/202212/016388517cdc468.png" />所以<img src="https://img2.meite.com/questions/202212/01638851ab158db.png" /><img src="https://img2.meite.com/questions/202212/01638851ba75287.png" />。</p><p>3、计算<img src="https://img2.meite.com/questions/202212/0163880f1f1db81.png" /></p><p>答 案:解:令<img src="https://img2.meite.com/questions/202212/0163880f2c78d6e.png" />当x=4时,t=2;当x=9时,t=3。则有<img src="https://img2.meite.com/questions/202212/0163880f445e340.png" /><img src="https://img2.meite.com/questions/202212/0163880f6263be5.png" /></p><p class="introTit">填空题</p><p>1、过点(0,1,1)且与直线<img src="https://img2.meite.com/questions/202405/166645bdf86c2fa.png" />垂直的平面方程为()
</p><p>答 案:x+2y+z-3=0</p><p>解 析:由题意,平面法向量为n=(1,2,1),又过点(0,1,1),故方程为x+2(y-1)+(z-1)=0,即x+2y+z-3=0.</p><p>2、设<img src="https://img2.meite.com/questions/202212/03638aeab160574.png" />,<img src="https://img2.meite.com/questions/202212/03638aeac2016a6.png" />,则g'(x)=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638aead6c9cb7.png" /></p><p>解 析:令t=x+1则x=t-1,<img src="https://img2.meite.com/questions/202212/03638aeae9a9348.png" />,则<img src="https://img2.meite.com/questions/202212/03638aeaf6c8618.png" />,<img src="https://img2.meite.com/questions/202212/03638aeb0738a24.png" />。</p><p>3、函数<img src="https://img2.meite.com/questions/202211/176375a282d1b8b.png" />的单调减少区间为()。</p><p>答 案:(-1,1)</p><p>解 析:<img src="https://img2.meite.com/questions/202211/176375a2940aabf.png" />,则y'=x<sup>2</sup>-1.令y'=0,得x<sub>1</sub>=1,x<sub>2</sub>=1.当x<1时,>0,函数单调递增;当-1<x<1时,y'<0,函数y单调递减;当x>1时,y'>0,函数单调递增.故单调减少区间为(-1,1)。</p><p class="introTit">简答题</p><p>1、设y=y(x)由方程x<sup>2</sup>+2y<sup>3</sup>+2xy+3y-x=1确定,求y’。
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf0d698a7de.png" /></p><p>解 析:本题考查的知识点为隐函数求导法。 <img src="https://img2.meite.com/questions/202408/1666bf0d6e4d1f6.png" />
</p>