2024年成考专升本《高等数学一》每日一练试题12月28日

聚题库
12/28
<p class="introTit">单选题</p><p>1、下列等式成立的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/28638480573b3e7.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/28638480611578b.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/286384806d4d475.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/286384807ac325b.png' /></li></ul><p>答 案:D</p><p>解 析:A项,由<img src="https://img2.meite.com/questions/202211/28638480d2b2cbb.png" />,可知<img src="https://img2.meite.com/questions/202211/28638480e0e1db3.png" />;B项,<img src="https://img2.meite.com/questions/202211/28638480ee2b9c1.png" />;C项,<img src="https://img2.meite.com/questions/202211/2863848104d297c.png" />;D项,<img src="https://img2.meite.com/questions/202211/286384811706b9d.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202408/1566bdc0a984c2e.png" />。  </p><ul><li>A:1</li><li>B:2</li><li>C:e</li><li>D:3</li></ul><p>答 案:C</p><p>解 析:本题考查的知识点为定积分运算。 <img src="https://img2.meite.com/questions/202408/1566bdc0b0b3843.png" />因此选C。  </p><p>3、设z=x<sup>2</sup>y,则<img src="https://img2.meite.com/questions/202211/166374939f758ab.png" />=()。</p><ul><li>A:xy</li><li>B:2xy</li><li>C:x<sup>2</sup></li><li>D:2xy+x<sup>2</sup></li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/16637493b3d7670.png" />。</p><p class="introTit">主观题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202212/03638ac2f04259b.png" />的通解。</p><p>答 案:解:原方程对应的齐次方程为<img src="https://img2.meite.com/questions/202212/03638ac300089f5.png" />,特征方程及特征根为r<sup>2</sup>-4r+4=0,r<sub>1,2</sub>=2,齐次方程的通解为<img src="https://img2.meite.com/questions/202212/03638ac33159fca.png" />。在自由项<img src="https://img2.meite.com/questions/202212/03638ac3410667c.png" />中,a=-2不是特征根,所以设<img src="https://img2.meite.com/questions/202212/03638ac35b7ee07.png" />,代入原方程,有<img src="https://img2.meite.com/questions/202212/03638ac36d49e52.png" />,故原方程通解为<img src="https://img2.meite.com/questions/202212/03638ac37e8351d.png" />。</p><p>2、设e<sup>x</sup>+x=e<sup>y</sup>+y,求<img src="https://img2.meite.com/questions/202211/306387080d77da3.png" />。</p><p>答 案:解:对等式两边同时微分,得<img src="https://img2.meite.com/questions/202211/306387081b5699a.png" />,故<img src="https://img2.meite.com/questions/202211/306387082eaafac.png" />。</p><p>3、求曲线y=x<sup>2</sup>、直线y=2-x与x轴所围成的图形的面积A及该图形绕y轴旋转所得旋转体的体积V<sub>y</sub>。</p><p>答 案:解:所围图形见下图。<img src="https://img2.meite.com/questions/202212/01638817ad26d85.png" /><img src="https://img2.meite.com/questions/202212/01638817cd54176.png" />A可另求如下:由<img src="https://img2.meite.com/questions/202212/01638817dd2d185.png" />故<img src="https://img2.meite.com/questions/202212/01638817ee1852e.png" /><img src="https://img2.meite.com/questions/202212/016388180148236.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bf05d79a47f.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf05dbf20af.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bf05e02ff41.png" /></p><p>2、微分方程y'-2y=3的通解为=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163886f26ac016.png" /></p><p>解 析:分离变量<img src="https://img2.meite.com/questions/202212/0163886f3ac7856.png" />两边分别积分<img src="https://img2.meite.com/questions/202212/0163886f5084bb4.png" /><img src="https://img2.meite.com/questions/202212/0163886f5ca216e.png" />方程的通解为<img src="https://img2.meite.com/questions/202212/0163886f6f7619a.png" /></p><p>3、设y=(x+3)<sup>2</sup>,则y'=()。</p><p>答 案:2(x+3)</p><p>解 析:<img src="https://img2.meite.com/questions/202211/166374579ad741f.png" /></p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666befa3130a6e.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666befa35be679.png" /></p>
相关题库