2024年成考专升本《高等数学一》每日一练试题12月11日
<p class="introTit">单选题</p><p>1、当x→0时,<img src="https://img2.meite.com/questions/202211/2863848346e0955.png" />与1-cosx比较,可得()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/286384835ef41b5.png' />是较1-cosx高阶的无穷小量</li><li>B:<img src='https://img2.meite.com/questions/202211/286384836049dd1.png' />是较1-cosx低阶的无穷小量</li><li>C:<img src='https://img2.meite.com/questions/202211/2863848361ac933.png' />与1-cosx是同阶无穷小量,但不是等价无穷小量</li><li>D:<img src='https://img2.meite.com/questions/202211/2863848363a9f99.png' />与1-cosx是等价无穷小量</li></ul><p>答 案:B</p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/28638483a1af7dc.png" />,所以<img src="https://img2.meite.com/questions/202211/28638483ac91a76.png" />是较1-cosx的低阶无穷小量。</p><p>2、微分方程<img src="https://img2.meite.com/questions/202408/1666bf0572b3d02.png" />的特征根为()。
</p><ul><li>A:0,4</li><li>B:-2,2</li><li>C:-2,4</li><li>D:2,4</li></ul><p>答 案:B</p><p>解 析:由r<sup>2</sup>-4=0,r<sub>1</sub>=2,r<sub>2</sub>=-2,知<img src="https://img2.meite.com/questions/202408/1666bf057766a1e.png" />的特征根为2,-2,故选B。</p><p>3、曲线Y=x<sup>-3</sup>在点(1,1)处的切线的斜率为()。
</p><ul><li>A:-1</li><li>B:-2</li><li>C:-3</li><li>D:-4</li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666beb0498956e.png" /></p><p class="introTit">主观题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202212/03638ac2f04259b.png" />的通解。</p><p>答 案:解:原方程对应的齐次方程为<img src="https://img2.meite.com/questions/202212/03638ac300089f5.png" />,特征方程及特征根为r<sup>2</sup>-4r+4=0,r<sub>1,2</sub>=2,齐次方程的通解为<img src="https://img2.meite.com/questions/202212/03638ac33159fca.png" />。在自由项<img src="https://img2.meite.com/questions/202212/03638ac3410667c.png" />中,a=-2不是特征根,所以设<img src="https://img2.meite.com/questions/202212/03638ac35b7ee07.png" />,代入原方程,有<img src="https://img2.meite.com/questions/202212/03638ac36d49e52.png" />,故原方程通解为<img src="https://img2.meite.com/questions/202212/03638ac37e8351d.png" />。</p><p>2、设函数,<img src="https://img2.meite.com/questions/202211/16637480d63f6ef.png" />在x=1处连续,求a。</p><p>答 案:解:f(x)在x=1处连续,有<img src="https://img2.meite.com/questions/202211/16637480fba6b38.png" /><img src="https://img2.meite.com/questions/202211/1663748106a7812.png" />,<img src="https://img2.meite.com/questions/202211/16637480f011c77.png" /><br />得a=2。</p><p>3、设f(x,y)为连续函数,交换二次积分<img src="https://img2.meite.com/questions/202212/01638852a69d533.png" />的积分次序。</p><p>答 案:解:由题设知<img src="https://img2.meite.com/questions/202212/01638852b7b66e1.png" />中积分区域的图形应满足1≤x≤e,0≤y≤lnx,因此积分区域的图形见下图中阴影部分<img src="https://img2.meite.com/questions/202212/01638852ea3b3a1.png" />.由y=lnx,有x=e<sup>y</sup>。所以<img src="https://img2.meite.com/questions/202212/0163885309c8a22.png" />。</p><p class="introTit">填空题</p><p>1、设y=(x+3)<sup>2</sup>,则y'=()。</p><p>答 案:2(x+3)</p><p>解 析:<img src="https://img2.meite.com/questions/202211/166374579ad741f.png" /></p><p>2、设y=sin(x+2),则y'=()。</p><p>答 案:cos(x+2)</p><p>解 析:<img src="https://img2.meite.com/questions/202211/166374963d23a47.png" /></p><p>3、<img src="https://img2.meite.com/questions/202405/166645bc9c6b921.png" />()
</p><p>答 案:<img src="https://img2.meite.com/questions/202405/166645bca0b9639.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202405/166645bca5b0c5e.png" /></p><p class="introTit">简答题</p><p>1、函数y=y(x)由方程<img src="https://img2.meite.com/questions/202303/17641407dc7401a.png" />确定,求dy</p><p>答 案:<img src="https://img2.meite.com/questions/202303/176414080f37d43.png" /></p>