当前位置:首页 > 考试
>语文
>精选习题
>2024年成考高起点《数学(理)》每日一练试题12月07日
2024年成考高起点《数学(理)》每日一练试题12月07日
<p class="introTit">单选题</p><p>1、在△ABC中,AB=4,BC=6,∠ABC=60°,则AC=()。</p><ul><li>A:128</li><li>B:76</li><li>C:<img src='https://img2.meite.com/questions/202408/1566bda8b96acda.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1566bda8bdb1089.png' /></li></ul><p>答 案:C</p><p>解 析:已知两边及夹角用余弦定理得 AC<sup>2</sup>=6<sup>2</sup>+4<sup>2</sup>-2×6×4cos60°=28
∴AC=<img src="https://img2.meite.com/questions/202408/1566bda8c6deb80.png" /></p><p>2、函数y=x<sup>2</sup>—2x+6在区间(-∞,1)、(1,+∞)分别()。</p><ul><li>A:单调增加、单调减少</li><li>B:单调减少、单调增加</li><li>C:单调增加、单调增加</li><li>D:单调减少、单调减少</li></ul><p>答 案:B</p><p>解 析:方法一:用配方法把y=x<sup>2</sup>-2x+6配成完全平方式。 y=x<sup>2</sup>-2x+6=(x-1)2+5,开口向上的抛物线顶点坐标为(1,5),可得出单调区间。 方法二:用导数判定。y’=2x-2=2(x-1) <br />当x<1时,y’<0,单调减少;当x>1时,y>0,单调增加。</p><p>3、已知<img src="https://img2.meite.com/questions/202408/1566bdad6595236.png" />=<img src="https://img2.meite.com/questions/202408/1566bdad6b18e80.png" />,则<img src="https://img2.meite.com/questions/202408/1566bdad6ea883f.png" />=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1566bdad72cba19.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/1566bdad768d9b7.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/1566bdad7a55603.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1566bdad7d9ce7f.png' /></li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1566bdad81ec7e0.png" /><img src="https://img2.meite.com/questions/202408/1566bdad8511fba.png" /></p><p>4、设集合M={1,2,4},N={2,3,5},则集合M∪N=().</p><ul><li>A:{2}</li><li>B:{1,2,3,4,5}</li><li>C:{3,5}</li><li>D:{1,4}</li></ul><p>答 案:B</p><p>解 析:M∪N={1,2,4}∪{2,3,5)= {1,2,3,4,5} (答案为B)</p><p class="introTit">主观题</p><p>1、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;<br />(II)求f(x)的极值.</p><p>答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/1564116d2d14a94.png" />当<img src="https://img2.meite.com/questions/202303/1564116d3d33026.png" />时,f'(x)<O;当<img src="https://img2.meite.com/questions/202303/1564116d6f6aec3.png" />时,f'(x)>O.故f(x)在区间<img src="https://img2.meite.com/questions/202303/1564116db9a0764.png" />单调递减,在区间<img src="https://img2.meite.com/questions/202303/1564116dc99fc91.png" />单调递增.因此f(x)在<img src="https://img2.meite.com/questions/202303/1564116ddb842d0.png" />时取得极小值<img src="https://img2.meite.com/questions/202303/1564116de4f1b79.png" /></p><p>2、试证明下列各题 <br />(1)<img src="https://img2.meite.com/questions/202408/1666bef434c5c6b.png" /><br />(2)<img src="https://img2.meite.com/questions/202408/1666bef43901e49.png" /></p><p>答 案:(1)化正切为正、余弦,通分即可得证。 (2)<img src="https://img2.meite.com/questions/202408/1666bef43f40fcf.png" /><img src="https://img2.meite.com/questions/202408/1666bef44186efa.png" /></p><p>3、化简: (1)<img src="https://img2.meite.com/questions/202408/1666bef41968cd3.png" /><br />(2)<img src="https://img2.meite.com/questions/202408/1666bef41cdc32c.png" /></p><p>答 案:(1)<img src="https://img2.meite.com/questions/202408/1666bef42403fad.png" /> (2)<img src="https://img2.meite.com/questions/202408/1666bef42ada4be.png" /></p><p>4、设<img src="https://img2.meite.com/questions/202408/1666bef0f19313e.png" />(0<α<π),求tanα的值。</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bef0fba0e54.png" /></p><p class="introTit">填空题</p><p>1、函数<img src="https://img2.meite.com/questions/202408/1566bda2f784bfa.png" />(x∈R)的最小值为______。</p><p>答 案:-1</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1566bda2fbb3598.png" /></p><p>2、在△ABC中,已知a=<img src="https://img2.meite.com/questions/202408/1666bef3cd8b26b.png" />+<img src="https://img2.meite.com/questions/202408/1666bef3d288c0a.png" />,则bcosC+ccosB=______。
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bef3da820ed.png" /></p><p>解 析:由余弦定理得,<img src="https://img2.meite.com/questions/202408/1666bef3e44afd9.png" /><img src="https://img2.meite.com/questions/202408/1666bef3e747273.png" />
</p>