2024年成考专升本《高等数学二》每日一练试题12月04日

聚题库
12/04
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()  </p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" />  </p><p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202408/1966c2b96bf2e41.png" />()。  </p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1966c2b9700cf4e.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/1966c2b97592372.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/1966c2b979128c8.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1966c2b97e5acad.png' /></li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1966c2b9832bcab.png" /></p><p>2、<img src="https://img2.meite.com/questions/202303/206417d2db15f92.png" />()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/206417d2e14f992.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/206417d2e686121.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/206417d2f875e0a.png' /></li><li>D:1</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202303/206417d30d1d652.png" /></p><p class="introTit">主观题</p><p>1、求一个正弦曲线与x轴所围成图形的面积(只计算一个周期的面积).</p><p>答 案:解:取从0~2π的正弦曲线如图<img src="https://img2.meite.com/questions/202212/0763903d20af21a.png" />,设所围图形面积为S,则<img src="https://img2.meite.com/questions/202212/0763903cddd57ab.png" /><img src="https://img2.meite.com/questions/202212/0763903ce9b5e60.png" /><img src="https://img2.meite.com/questions/202212/0763903cf62e7d0.png" /><img src="https://img2.meite.com/questions/202212/0763903d056e610.png" />注意到图形面积是对称的,可直接得出<img src="https://img2.meite.com/questions/202212/0763903d341c7a8.png" />。</p><p>2、设<img src="https://img2.meite.com/questions/202212/0863914d5ba8abc.png" />,其中f为可微函数.证明:<img src="https://img2.meite.com/questions/202212/0863914d69e3e13.png" />.</p><p>答 案:证:因为<img src="https://img2.meite.com/questions/202212/0863914d7a96b31.png" />所以<img src="https://img2.meite.com/questions/202212/0863914d8649bcf.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202408/1966c2f01dc8e9a.png" />  </p><p>答 案:4</p><p>解 析:【提示】先求y’,再求y”,然后将x=0代入y”即可。 因为<img src="https://img2.meite.com/questions/202408/1966c2f02474149.png" />所以<img src="https://img2.meite.com/questions/202408/1966c2f02898322.png" />。  </p><p>2、设函数y=xsinx,则y"=_____。  </p><p>答 案:2cosx-xsinx。</p><p>解 析:y'=sinx+xcosx,y"=cosx+cosx-xsinx=2cosx-xsinx。</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1966c3047ba4d6d.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1966c3047fce9b5.png" /></p><p>2、<img src="https://img2.meite.com/questions/202408/1966c2aee197deb.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1966c2aee7e8ae7.png" />。 <img src="https://img2.meite.com/questions/202408/1966c2aeed3f0c5.png" />  </p>
相关题库