2024年高职单招《数学(中职)》每日一练试题11月16日

聚题库
11/16
<p class="introTit">单选题</p><p>1、已知数列{an}是等差数列,a3=2,公差<img src="https://img2.meite.com/questions/202409/1866ea6ee2e236d.png" />则首项a1=()</p><ul><li>A:3</li><li>B:4</li><li>C:5</li><li>D:6</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202409/1866ea6ef07cb2a.png" /></p><p>2、已知扇形的半径为2,圆心角为<img src="https://img2.meite.com/questions/202409/2166ee399678968.png" />,则此扇形的弧长为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202409/2166ee39a19633a.png' /></li><li>B:π</li><li>C:2π</li><li>D:4π</li></ul><p>答 案:B</p><p>解 析:因为扇形的半径r=2,圆心角<img src="https://img2.meite.com/questions/202409/2166ee39a654994.png" />,所以扇形的弧长<img src="https://img2.meite.com/questions/202409/2166ee39ad687ae.png" /><img src="https://img2.meite.com/questions/202409/2166ee3b5ea0da1.png" /></p><p>3、不等式<img src="https://img2.meite.com/questions/202409/1066dfeb026286b.png" />的解集为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202409/1066dfeb0d79df5.png' /></li><li>B:<img src='https://img2.meite.com/questions/202409/1066dfeb12cc6ec.png' /></li><li>C:<img src='https://img2.meite.com/questions/202409/1066dfeb1869dab.png' /></li><li>D:<img src='https://img2.meite.com/questions/202409/1066dfeb1e9bfaf.png' /></li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202409/1066dfeb26a3329.png" /><img src="https://img2.meite.com/questions/202409/1066dfeb2b64dbd.png" /></p><p>4、设双曲线<img src="https://img2.meite.com/questions/202409/2166ee21983d531.png" />的左、右焦点分别为F₁,F₂,P为双曲线右支上一点,且|PF₁|=3|PF₂|,则∠F₁PF₂=()  </p><ul><li>A:30°</li><li>B:45°</li><li>C:60°</li><li>D:90°</li></ul><p>答 案:C</p><p>解 析:易知双曲线<img src="https://img2.meite.com/questions/202409/2166ee21983d531.png" />的实轴长2a=4,焦距<img src="https://img2.meite.com/questions/202409/2166ee2574a0d18.png" />根据双曲线的定义得|PF<sub>1</sub>|-|PF<sub>2</sub>|=4,因为|PF<sub>1</sub>|=3|PF<sub>2</sub>|,所以|PF<sub>1</sub>|=6,|PF<sub>2</sub>|=2.在△F<sub>1</sub>PF<sub>2</sub>中,由余弦定理得<img src="https://img2.meite.com/questions/202409/2166ee25817e4fb.png" />因为<img src="https://img2.meite.com/questions/202409/2166ee258e99ec0.png" />,所以∠F<sub>1</sub>PF<sub>2</sub>=60°.</p><p class="introTit">填空题</p><p>1、公比为2的等比数列{an}中,若a<sub>1</sub>+a<sub>2</sub>=3,则a<sub>4</sub>+a<sub>5</sub>=()  </p><p>答 案:24</p><p>解 析:<img src="https://img2.meite.com/questions/202409/1866ea940d93154.png" /><img src="https://img2.meite.com/questions/202409/1866ea9415432a0.png" /></p><p>2、已知数据 10,x,11,y,12,z的平均数为8,则数据 x,y,z的平均数为()  </p><p>答 案:5</p><p>解 析:易得10+x+y+11+12+z= 48,则x+y+z= 15,故x,y,z的平均数为5.</p><p>3、已知函数f(x)=x<sup>2</sup>-2ax+3的值域是[-1,+∞),则a=()  </p><p>答 案:±2</p><p>解 析:易得f(x)=x<sup>2</sup>-2ax+3=(x-a)<sup>2</sup>-a<sup>2</sup>+3,故f(x)<sub>min</sub>=f(a)=-a<sup>2</sup>+3=-1,解得a=2或a=-2.</p><p>4、双曲线y<sup>2</sup>-x<sup>2</sup>=2的焦点坐标是()  </p><p>答 案:(0,±2) </p><p>解 析:由y<sup>2</sup>-x<sup>2</sup>=2得<img src="https://img2.meite.com/questions/202409/1866ea983053f6f.png" />,所以双曲线的焦点在y轴上,a<sup>2</sup>=b<sup>2</sup>= 2,所以c<sup>2</sup>=a<sup>2</sup>+b<sup>2</sup>= 4,所以焦点坐标是(0,±2).</p><p class="introTit">简答题</p><p>1、已知等差数列{a<sub>n</sub>}的前n项和为S<sub>n</sub>且a<sub>3</sub>+a<sub>5</sub>=8,S<sub>3</sub>+S<sub>5</sub>=21. (1)求数列{an}的通项公式; (2)若<img src="https://img2.meite.com/questions/202409/1866ea73095ef4c.png" />为数列{bn}的前n项和,求Tn</p><p>答 案:<img src="https://img2.meite.com/questions/202409/1866ea7310746f9.png" /><img src="https://img2.meite.com/questions/202409/1866ea731574353.png" /><img src="https://img2.meite.com/questions/202409/1866ea731960298.png" /><img src="https://img2.meite.com/questions/202409/1866ea731e19dd8.png" /><img src="https://img2.meite.com/questions/202409/1866ea73249be5a.png" /></p><p>2、已知椭圆<img src="https://img2.meite.com/questions/202409/1866ea40f2b8734.png" />的右焦点为<img src="https://img2.meite.com/questions/202409/1866ea40fb35447.png" />,长轴长和短轴长之和为12,过点<img src="https://img2.meite.com/questions/202409/1866ea4108ee28a.png" />且倾斜角为<img src="https://img2.meite.com/questions/202409/1866ea41162d299.png" />的直线与椭圆交于 A,B两点.(1)求椭圆的标准方程;<br />(2)求线段 AB 的中点坐标.  </p><p>答 案:(1)由题意知半焦距<img src="https://img2.meite.com/questions/202409/1866ea79fb4d7f2.png" />,2a+2b=12,即a+b=6. 又a<sup>2</sup>-b<sup>2</sup>=c<sup>2</sup>, 所以a=4,b= 2, 所以椭圆的标准方程为<img src="https://img2.meite.com/questions/202409/1866ea7a24d497e.png" /> (2)易得直线AB的方程为<img src="https://img2.meite.com/questions/202409/1866ea7a30db014.png" />,即<img src="https://img2.meite.com/questions/202409/1866ea7a387f559.png" /> 由<img src="https://img2.meite.com/questions/202409/1866ea7a4b9bbc1.png" />得13x<sup>2</sup>-24x-4=0. 设A(x<sub>1</sub>,y<sub>1</sub>),B(x<sub>2</sub>,y<sub>2</sub>),线段 AB 中点的坐标为(x<sub>0</sub>,y<sub>0</sub>), 则<img src="https://img2.meite.com/questions/202409/1866ea7a856c16f.png" /> 所以<img src="https://img2.meite.com/questions/202409/1866ea7a8b285d0.png" /> 所以<img src="https://img2.meite.com/questions/202409/1866ea7a92c300b.png" /> 所以线段A8 的中点坐标为<img src="https://img2.meite.com/questions/202409/1866ea7aa1bd986.png" />  </p>
相关题库