2024年成考专升本《高等数学二》每日一练试题11月12日
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()
</p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" /> </p><p class="introTit">单选题</p><p>1、设f(x)的一个原函数为lnx,则f(x)等于()。
</p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1666bf150633938.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/1666bf1509bcfa7.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/1666bf15125f357.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1666bf15216ac11.png' /></li></ul><p>答 案:A</p><p>解 析:本题考查的知识点是原函数的概念,因此有:<img src="https://img2.meite.com/questions/202408/1666bf15260aba3.png" /> 所以选A。</p><p>2、设函数y=f(x)在点(x,f(x))处的切线斜率为<img src="https://img2.meite.com/questions/202408/2066c3f0dbd17e5.png" />,则过点(1,0)的切线方程为()。
</p><ul><li>A:<img src='https://img2.meite.com/questions/202408/2066c3f0e0cfee5.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/2066c3f0e479a58.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/2066c3f0e89fae4.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/2066c3f0ebe8c2a.png' /></li></ul><p>答 案:B</p><p>解 析:本题考查的知识点是:函数y=f(x)在点(x,f(x))处导数的几何意义是表示该函数对应曲线过点(x,f(x))的切线的斜率。由<img src="https://img2.meite.com/questions/202408/2066c3f0f16c1bb.png" />可知,切线过点(1,0),则切线方程为y=x-1,所以选B。</p><p class="introTit">主观题</p><p>1、设D为曲线y=1-x<sup>2</sup>,直线y=x+1及x轴所围成的平面图形(如图所示).<img src="https://img2.meite.com/questions/202212/05638d8e27738d0.png" />(1)求平面图形D的面积S;<br />(2)求平面图形D绕x轴旋转一周所成旋转体的体积V<sub>x</sub>.</p><p>答 案:解:(1)<img src="https://img2.meite.com/questions/202212/05638d8e5a9b9be.png" />(2)<img src="https://img2.meite.com/questions/202212/05638d8e69ada2a.png" /><img src="https://img2.meite.com/questions/202212/05638d8e8268258.png" /></p><p>2、求二元函数f(x,y)=x<sup>2</sup>+y<sup>2</sup>+xy在条件x+2y=4下的极值.</p><p>答 案:解:设<img src="https://img2.meite.com/questions/202212/05638da100e2e79.png" />令<img src="https://img2.meite.com/questions/202212/05638da1121a14a.png" />由式(1)与式(2)消去<img src="https://img2.meite.com/questions/202212/05638da1225b4b1.png" />得x=0,代入式(3)得y=2.所以函数f(x,y)的条件极值为4.</p><p class="introTit">填空题</p><p>1、设曲线<img src="https://img2.meite.com/questions/202303/206417d122a9d10.png" />在点M处切线的斜率为2,则点M的坐标为()
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/206417d1420c8d0.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/206417d154ac9cc.png" />由导数的几何意义可知,若点M的坐标为<img src="https://img2.meite.com/questions/202303/206417d17189971.png" />则<img src="https://img2.meite.com/questions/202303/206417d17e44481.png" />解得<img src="https://img2.meite.com/questions/202303/206417d18948dbb.png" /><img src="https://img2.meite.com/questions/202303/206417d194ee676.png" /></p><p>2、若<img src="https://img2.meite.com/questions/202408/1966c3044385966.png" />,则n=______。
</p><p>答 案:8</p><p class="introTit">简答题</p><p>1、求曲线y=x<sup>2</sup>与该曲线在x=a(a>0)处的切线与x轴所围的平面图形的面积.</p><p>答 案:如图所示,在x=a出切线的斜率为<img src="https://img2.meite.com/questions/202204/2462651db124c09.png" />切线方程为<img src="https://img2.meite.com/questions/202204/2462651dc16aa93.png" /><img src="https://img2.meite.com/questions/202204/2462651dce2d620.png" /><img src="https://img2.meite.com/questions/202204/2462651dd95fff2.png" /></p><p>2、求函数<img src="https://img2.meite.com/questions/202212/06638eda5371cb6.png" />在<img src="https://img2.meite.com/questions/202212/06638eda6200b10.png" />条件下的极值及极值点.
</p><p>答 案:令<img src="https://img2.meite.com/questions/202212/06638edaa126965.png" />于是<img src="https://img2.meite.com/questions/202212/06638edae805615.png" />
求解方程组<img src="https://img2.meite.com/questions/202212/06638edaf64e62d.png" />得其驻点<img src="https://img2.meite.com/questions/202212/06638edb03b2e79.png" />故点<img src="https://img2.meite.com/questions/202212/06638edb0dd4e52.png" />为极值点,且极值为<img src="https://img2.meite.com/questions/202212/06638edb1cb8c40.png" /></p>