2024年高职单招《数学(中职)》每日一练试题11月11日
<p class="introTit">单选题</p><p>1、若直线ax-y-2a-1=0与圆x²+y²-2x-1=0相切,则a的值是() </p><ul><li>A:2</li><li>B:<img src='https://img2.meite.com/questions/202409/2166ee8910d98cc.png' /></li><li>C:1</li><li>D:<img src='https://img2.meite.com/questions/202409/2166ee891676593.png' /></li></ul><p>答 案:C</p><p>解 析:由x²+y²-2x-1=0得(x-1)²+y²=2,则圆的圆心坐标为(1,0),半径为<img src="https://img2.meite.com/questions/202409/2166ee891676593.png" />.由题意知圆心(1,0)到直线ax-y-2a-1=0的距离等于半径,即<img src="https://img2.meite.com/questions/202409/2166ee8cafa77a7.png" />整理得(a-1)²=0,解得a=1.</p><p>2、已知数列{an}是等差数列,a3=2,公差<img src="https://img2.meite.com/questions/202409/1866ea6ee2e236d.png" />则首项a1=()</p><ul><li>A:3</li><li>B:4</li><li>C:5</li><li>D:6</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202409/1866ea6ef07cb2a.png" /></p><p>3、奇函数y=f(x)的部分图像如图所示,则()
<img src="https://img2.meite.com/questions/202409/1066e00cbe12d82.png" /></p><ul><li>A:<img src='https://img2.meite.com/questions/202409/1066e00cd4ab722.png' /></li><li>B:<img src='https://img2.meite.com/questions/202409/1066e00cdb36097.png' /></li><li>C:<img src='https://img2.meite.com/questions/202409/1066e00ce1da2a4.png' /></li><li>D:<img src='https://img2.meite.com/questions/202409/1066e00ce7bcdbf.png' /></li></ul><p>答 案:A</p><p>解 析:因为f(x)是奇函数,所以<img src="https://img2.meite.com/questions/202409/1066e00ceea8633.png" /></p><p>4、已知椭圆<img src="https://img2.meite.com/questions/202409/2166ee69cd9175d.png" />的焦距为2√2,过原点O的直线交椭圆C于A,B两点,P是椭圆C上另外一点,若直线PA,PB的斜率之积为<img src="https://img2.meite.com/questions/202409/2166ee69d714f42.png" />,则椭圆C的方程为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202409/2166ee69e32580d.png' /></li><li>B:<img src='https://img2.meite.com/questions/202409/2166ee6a089f297.png' /></li><li>C:<img src='https://img2.meite.com/questions/202409/2166ee6a0f2c842.png' /></li><li>D:<img src='https://img2.meite.com/questions/202409/2166ee6a1c5371d.png' /></li></ul><p>答 案:B</p><p>解 析:由题意设P(x<sub>0,</sub>y<sub>0</sub>),A(x<sub>1</sub>,y<sub>1</sub>),B(-x<sub>1</sub>,-y<sub>1</sub>),则<img src="https://img2.meite.com/questions/202409/2166ee6a230c81b.png" /><img src="https://img2.meite.com/questions/202409/2166ee6a2a5d4d6.png" /><img src="https://img2.meite.com/questions/202409/2166ee6a2f9279c.png" /><img src="https://img2.meite.com/questions/202409/2166ee6a348787f.png" /> 所以<img src="https://img2.meite.com/questions/202409/2166ee6a3f96af1.png" />,又c=√2,c²=a²-b²,所以a²=8,b²=6,所以椭圆C的方程为<img src="https://img2.meite.com/questions/202409/2166ee6a47db941.png" /></p><p class="introTit">填空题</p><p>1、已知椭圆<img src="https://img2.meite.com/questions/202409/1866ea3f6657c25.png" />与直线<img src="https://img2.meite.com/questions/202409/1866ea3f6fe1e6d.png" />交于A,B两点,则实数m的取值范围为()
</p><p>答 案:<img src="https://img2.meite.com/questions/202409/1866ea714795630.png" /></p><p>解 析:由<img src="https://img2.meite.com/questions/202409/1866ea71744c3f5.png" />得9x<sup>2</sup>+6mx+2m<sup>2</sup>-18=0.因为直线l与椭圆C交于A,B两点,所以Δ=36m<sup>2</sup>-36(2m<sup>2</sup>-18)= 36(18-m<sup>2</sup>)>0,解得<img src="https://img2.meite.com/questions/202409/1866ea71b93b9e7.png" />,故实数m的取值范围为<img src="https://img2.meite.com/questions/202409/1866ea714795630.png" />.</p><p>2、若(x-1)<sup>n</sup>的展开式中x<sup>2</sup>的系数是-10,则n的值为()
</p><p>答 案:5</p><p>解 析:因为(x-1)<sup>n</sup>的展开式中x<sup>2</sup>的系数是<img src="https://img2.meite.com/questions/202409/1266e2a816afaa9.png" />,所以n= 5.</p><p>3、各棱长都为1的正三棱锥的体积是()
</p><p>答 案:<img src="https://img2.meite.com/questions/202409/1866ea2e675c0f1.png" /></p><p>解 析:易知该正三棱锥的底面积为<img src="https://img2.meite.com/questions/202409/1866ea2e6fef505.png" />,高为<img src="https://img2.meite.com/questions/202409/1866ea2e792c783.png" />,故该正三校锥的体积为<img src="https://img2.meite.com/questions/202409/1866ea2e8289b08.png" /></p><p>4、已知集合A={1.2.3},B={a,3.4}.若A∩B={2,3},则a=()
</p><p>答 案:2</p><p>解 析:∵A∩B={2,3},所以2∈B,又B={a,3,4},∴a=2.</p><p class="introTit">简答题</p><p>1、已知平面直角坐标系中,A(1,0),B(0,1),C(2,5).
(1)求向量<img src="https://img2.meite.com/questions/202409/1966ebc5fced5a5.png" />的坐标;
(2)若四边形ABCD为平行四边形,求点D的坐标.</p><p>答 案:<img src="https://img2.meite.com/questions/202409/1966ebc60469f4e.png" /><img src="https://img2.meite.com/questions/202409/1966ebc613badef.png" /></p><p>2、已知2<a<3,-2<b<3.
(1)求3a+b的取值范围;
(2)求a-b的取值范围.</p><p>答 案:(1)∵2<a<3, ∴6<3a<9,
又-2<b<3,∴4<3a+b<12.
(2)∵-2<b<3,∴-3<-b<2,
又∵2<a<3,∴-1<a-b<5.</p>