2024年成考专升本《高等数学二》每日一练试题11月08日

聚题库
11/08
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()  </p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" />  </p><p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202212/05638dab8f95198.png" />().</p><ul><li>A:x<sup>2</sup>+e<sup>x</sup>+C</li><li>B:2x<sup>2</sup>+e<sup>x</sup>+C</li><li>C:x<sup>2</sup>+xe<sup>x</sup>+C</li><li>D:2x<sup>2</sup>+xe<sup>x</sup>+C</li></ul><p>答 案:A</p><p>解 析:根据不定积分加法原则<img src="https://img2.meite.com/questions/202212/05638dabbe4ef18.png" />.</p><p>2、设离散型随机变量<img src="https://img2.meite.com/questions/202212/086391534bbd466.png" />的分布列为<img src="https://img2.meite.com/questions/202212/086391535b66ea5.png" />,则a=().</p><ul><li>A:0.4</li><li>B:0.3</li><li>C:0.2</li><li>D:0.1</li></ul><p>答 案:C</p><p>解 析:由0.3+a+0.1+0.4=1,得a=0.2.</p><p class="introTit">主观题</p><p>1、设函数y=y(x)是由方程<img src="https://img2.meite.com/questions/202212/07638ff5d6481a2.png" />所确定的隐函数,求函数曲线y=y(x)过点(0,1)的切线方程.</p><p>答 案:解:方程<img src="https://img2.meite.com/questions/202212/07638ff5f5b2c36.png" />两边对x求导数<img src="https://img2.meite.com/questions/202212/07638ff60402b85.png" />解得<img src="https://img2.meite.com/questions/202212/07638ff61225d52.png" />则<img src="https://img2.meite.com/questions/202212/07638ff62438065.png" />.切线方程为y-1=(-1)x,即x+y-1=0.</p><p>2、设<img src="https://img2.meite.com/questions/202212/0863914f0f2ceb9.png" />,求证:<img src="https://img2.meite.com/questions/202212/0863914f19132dd.png" /></p><p>答 案:证:<img src="https://img2.meite.com/questions/202212/0863914f923f8f5.png" /><img src="https://img2.meite.com/questions/202212/0863914faa9fddd.png" /><img src="https://img2.meite.com/questions/202212/0863914fc694081.png" />,故<img src="https://img2.meite.com/questions/202212/0863914fd45de72.png" />.</p><p class="introTit">填空题</p><p>1、设<img src="https://img2.meite.com/questions/202212/07638fed417929c.png" />则y'=().</p><p>答 案:<img src="https://img2.meite.com/questions/202212/07638fed4c9d99e.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/07638fed5b5125b.png" /></p><p>2、若<img src="https://img2.meite.com/questions/202212/06638ed76a715f8.png" />则k=().</p><p>答 案:<img src="https://img2.meite.com/questions/202212/06638ed775ea5c1.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ed781531bc.png" />,<img src="https://img2.meite.com/questions/202212/06638ed78bd6c37.png" />.</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202404/22662627d8bd5d8.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202404/22662627e11b236.png" /></p><p>2、求函数ƒ(x)=x<sup>3</sup>-3x+1的单调区间和极值。  </p><p>答 案:函数的定义域为(-∞,+∞),且ƒ'(x)=3x<sup>2</sup>-3,令ƒ'(x)=0,得驻点x=-1,x<sup>2</sup>=1。列表如下: <img src="https://img2.meite.com/questions/202408/1966c3045f1dbf3.png" />由上表可知,函数ƒ(x)的单调增区间为(-∞,-1]和[1,+∞),单调减区间为[-1,1];ƒ(-1)=3为极大值ƒ=-1为极小值。  </p><p>解 析:注意:如果将(-∞,-1]写成(-∞,-1),[1,+∞)写成(1,+∞),[-1,1]写成(-1,1)也正确。</p>
相关题库