当前位置:首页 > 考试
>民法
>精选习题
>2024年成考专升本《高等数学一》每日一练试题11月07日
2024年成考专升本《高等数学一》每日一练试题11月07日
<p class="introTit">单选题</p><p>1、设y=x3+2x+3,则y''=()。</p><ul><li>A:6x</li><li>B:3x</li><li>C:2x</li><li>D:2</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638ae428259a3.png" />。</p><p>2、设<img src="https://img2.meite.com/questions/202211/176375ffb347729.png" />()。</p><ul><li>A:2x+1</li><li>B:2xy+1</li><li>C:<img src='https://img2.meite.com/questions/202211/176375ffc1a95e7.png' /></li><li>D:2xy</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/176375ffd21b049.png" />只需将y看作常量,因此<img src="https://img2.meite.com/questions/202211/176375ffe6a0591.png" />。</p><p>3、设函数f(x)=<img src="https://img2.meite.com/questions/202303/176413df847672f.png" /><img src="https://img2.meite.com/questions/202303/176413df89bd492.png" />在x=0连续,则k等于()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/176413dfa914c93.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/176413dfaf5aa19.png' /></li><li>C:1</li><li>D:0</li></ul><p>答 案:A</p><p>解 析:由<img src="https://img2.meite.com/questions/202303/176413dfdc65b34.png" /><img src="https://img2.meite.com/questions/202303/176413dfe528933.png" />又因f(0)= k,f(x)在x=0处连续,故<img src="https://img2.meite.com/questions/202303/176413e00724476.png" /></p><p class="introTit">主观题</p><p>1、求<img src="https://img2.meite.com/questions/202211/2963856b9fa7d50.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856bb1eca82.png" /><img src="https://img2.meite.com/questions/202211/2963856bc769de2.png" /></p><p>2、已知直线<img src="https://img2.meite.com/questions/202212/016388255bb5763.png" />,平面<img src="https://img2.meite.com/questions/202212/016388256c571a4.png" />,试确定m,n的值,使得直线L在平面π上。</p><p>答 案:解:此题的关键是抓住直线L在平面π上,即:直线L与平面π平行;直线L上的点也满足平面π的方程,可由下面方法求得m,n的值,要使直线L在平面π上,只要直线L平行于平面π,且有一点在平面π上即可。直线L的方向向量为<img src="https://img2.meite.com/questions/202212/01638825a9baecc.png" />,平面π的法线向量为<img src="https://img2.meite.com/questions/202212/01638825b7bf7f1.png" />,由直线平行于平面π得S·n=0即<img src="https://img2.meite.com/questions/202212/01638825efa3b5f.png" />①又点P(1,-2,-1)为直线L上的点,把此点的坐标代入平面π的方程得<img src="https://img2.meite.com/questions/202212/016388260ae736f.png" />②,联立①,②解得:m=-4n=1。</p><p>3、求y'+<img src="https://img2.meite.com/questions/202212/03638abf7b42c03.png" />=1的通解.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638abf8ac5f6c.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202211/166374585f3b487.png" />=()。</p><p>答 案:2(e-1)</p><p>解 析:<img src="https://img2.meite.com/questions/202211/16637458663ea36.png" />。</p><p>2、z=sin(x<sup>2</sup>+y<sup>2</sup>),则dz=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/01638848f95b1b8.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638849090eabb.png" />,所以<img src="https://img2.meite.com/questions/202212/01638849178c76b.png" />。</p><p>3、设I=<img src="https://img2.meite.com/questions/202303/176414030ee674e.png" />交换积分次序,则有I=()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/176414032f6347a.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/1764140336b7f20.png" />的积分区域<img src="https://img2.meite.com/questions/202303/176414034e05ef7.png" /><img src="https://img2.meite.com/questions/202303/17641403566791e.png" /><img src="https://img2.meite.com/questions/202303/176414035c360c7.png" /></p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bef04572513.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bef04acdb09.png" /> <img src="https://img2.meite.com/questions/202408/1666bef05161b4b.png" />
</p>