2024年成考专升本《高等数学一》每日一练试题10月30日

聚题库
10/30
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202408/1566bda6fb1a149.png" />,则下列命题中正确的有()。  </p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1566bda6ff20bd7.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/1566bda702cc73f.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/1566bda7060088f.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1566bda7096b30a.png' /></li></ul><p>答 案:B</p><p>解 析:本题考查的知识点为级数收敛性的定义。 <img src="https://img2.meite.com/questions/202408/1566bda710353c1.png" />  </p><p>2、曲线<img src="https://img2.meite.com/questions/202303/176414270cdb305.png" /></p><ul><li>A:有三个拐点</li><li>B:有两个拐点</li><li>C:有三个拐点</li><li>D:无拐点</li></ul><p>答 案:D</p><p>解 析:因<img src="https://img2.meite.com/questions/202303/176414274b5edea.png" />则<img src="https://img2.meite.com/questions/202303/1764142757e1493.png" />在定义域内恒不等于0,所以无拐点。</p><p>3、设y<sub>1</sub>、y<sub>2</sub>是二阶常系数线性齐次方程<img src="https://img2.meite.com/questions/202212/0163886ae3f2fde.png" />的两个特解,C<sub>1</sub>、C<sub>2</sub>为两个任意常数,则下列命题中正确的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/0163886b0926a4b.png' />为该方程的通解</li><li>B:<img src='https://img2.meite.com/questions/202212/0163886b1b6e4b2.png' />不可能是该方程的通解</li><li>C:<img src='https://img2.meite.com/questions/202212/0163886b25e2368.png' />为该方程的解</li><li>D:<img src='https://img2.meite.com/questions/202212/0163886b306966b.png' />不是该方程的解</li></ul><p>答 案:C</p><p>解 析:由线性方程解的结构定理知<img src="https://img2.meite.com/questions/202212/0163886b3e67058.png" />为该方程的解,题中没说明y<sub>1</sub>、y<sub>2</sub>是否线性无关,无法判断<img src="https://img2.meite.com/questions/202212/0163886b5f7957c.png" />是否为通解。</p><p class="introTit">主观题</p><p>1、求过原点且与直线<img src="https://img2.meite.com/questions/202212/03638b00cedc248.png" />平行的直线的方程.</p><p>答 案:解:直线<img src="https://img2.meite.com/questions/202212/03638b00ddc6c33.png" />的方向向量为<img src="https://img2.meite.com/questions/202212/03638b00ed97e2a.png" />因所求直线与已知直线平行,所以所求直线的方向向量也为s.所求直线过原点.故由标准式可得所求直线的方程为<img src="https://img2.meite.com/questions/202212/03638b01053a5fd.png" /></p><p>2、设<img src="https://img2.meite.com/questions/202211/166374afc293c27.png" />,求<img src="https://img2.meite.com/questions/202211/166374afcf46756.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374afe188e20.png" /></p><p>3、求微分方程<img src="https://img2.meite.com/questions/202212/03638ac4b7e2728.png" />的通解。</p><p>答 案:解:微分方程的特征方程为<img src="https://img2.meite.com/questions/202212/03638ac4c40cecb.png" />,解得<img src="https://img2.meite.com/questions/202212/03638ac4d0dad50.png" />.故齐次微分方程的通解为<img src="https://img2.meite.com/questions/202212/03638ac4f355d8b.png" />特解为<img src="https://img2.meite.com/questions/202212/03638ac4e34f338.png" />,代入微分方程得<img src="https://img2.meite.com/questions/202212/03638ac50bee40f.png" />。故微分方程的通解为<img src="https://img2.meite.com/questions/202212/03638ac51c3977b.png" />。</p><p class="introTit">填空题</p><p>1、极限<img src="https://img2.meite.com/questions/202211/29638565e60a121.png" />=()。</p><p>答 案:2</p><p>解 析:<img src="https://img2.meite.com/questions/202211/2963856610bfe18.png" />。</p><p>2、设z=2x+y<sup>2</sup>,则dz=()。</p><p>答 案:2dx+2ydy</p><p>解 析:由于<img src="https://img2.meite.com/questions/202211/176375d6d4b56ba.png" />,可得<img src="https://img2.meite.com/questions/202211/176375d6ec4061d.png" /></p><p>3、<img src="https://img2.meite.com/questions/202408/1666bf0caed1730.png" />  </p><p>答 案:3</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bf0cb27f661.png" /></p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bf068c96158.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf06918dd7f.png" /> <img src="https://img2.meite.com/questions/202408/1666bf0695b91e5.png" />  </p>
相关题库