2024年高职单招《数学(中职)》每日一练试题10月24日

聚题库
10/24
<p class="introTit">单选题</p><p>1、若2sin<sup>2</sup>θ+3cos<sup>2</sup>θ=3,则cosθ=()</p><ul><li>A:1</li><li>B:-1</li><li>C:±1</li><li>D:0</li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202409/1366e3e00513dc7.png" /><img src="https://img2.meite.com/questions/202409/1366e3e00b753bf.png" /><img src="https://img2.meite.com/questions/202409/1366e3e00fc6eba.png" /></p><p>2、在正方体 ABCD-A<sub>1</sub>B<sub>1</sub>C<sub>1</sub>D<sub>1</sub>中,E为A<sub>1</sub>C<sub>1</sub>的中点,则异面直线 CE与 BD 所成的角为()  </p><ul><li>A:30°</li><li>B:45°</li><li>C:60°</li><li>D:90°</li></ul><p>答 案:D</p><p>解 析:如图,连接 AC,则<img src="https://img2.meite.com/questions/202409/1366e3f1aff24d6.png" /> 因为<img src="https://img2.meite.com/questions/202409/1366e3f1f219b9e.png" />,所以<img src="https://img2.meite.com/questions/202409/1366e3f1fd159bd.png" />因为<img src="https://img2.meite.com/questions/202409/1366e3f21aac228.png" />,所以<img src="https://img2.meite.com/questions/202409/1366e3f22e4811f.png" />平面 AA<sub>1</sub>C<sub>1</sub>C.因为<img src="https://img2.meite.com/questions/202409/1366e3f25429fb1.png" />所以<img src="https://img2.meite.com/questions/202409/1366e3f2695f1e1.png" />,所以异面直线 CE 与 BD 所成的角为 90°. <img src="https://img2.meite.com/questions/202409/1366e3f1b8322f5.png" />  </p><p>3、在等差数列{a<sub>n</sub>}中,a<sub>1</sub>=1,公差d=2,则前4项和S<sub>4</sub>=()</p><ul><li>A:7</li><li>B:8</li><li>C:14</li><li>D:16</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202409/1866ea3a3a11fd8.png" /></p><p>4、已知<img src="https://img2.meite.com/questions/202409/1066dfa303f2b41.png" />()  </p><ul><li>A:(2,3)</li><li>B:(-2,3)</li><li>C:(2,7)</li><li>D:(-2,7)</li></ul><p>答 案:D</p><p>解 析:因为-1<y<1,所以-2<-2y<2,又0<x<5,所以-2<x-2y<7.</p><p class="introTit">填空题</p><p>1、盒子中有散落的黑白棋子若干粒,已知从中取出2粒都是黑子的概率是<img src="https://img2.meite.com/questions/202409/1266e24b52053aa.png" />,从中取出2粒都是白子的概率是<img src="https://img2.meite.com/questions/202409/1266e24b5d41d82.png" />,则从中任意取出2粒恰好是一粒黑子一粒白子的概率是()  </p><p>答 案:<img src="https://img2.meite.com/questions/202409/1266e25130bb690.png" /></p><p>解 析:由题意,任意取出2粒棋子,不考虑先后顺序,一共有2粒都是黑子,2粒都是白子和一粒黑子一粒白子3 种可能.设事件A =“取出2粒都是黑子”,事件B=“取出2粒都是白子”,事件C=“取出2粒恰好是一粒黑子一粒白子”,则A,B,C两两互斥.由已知得<img src="https://img2.meite.com/questions/202409/1266e251e5486bd.png" />∵P(AUBUC)= P(A)+ P(B)+ P(C) = 1,∴P(C)=1-P(A)-P(B)=<img src="https://img2.meite.com/questions/202409/1266e25221cb74b.png" />,∴从中任意取出2粒恰好是一粒黑子一粒白子的概率是<img src="https://img2.meite.com/questions/202409/1266e2513220029.png" /></p><p>2、已知函数<img src="https://img2.meite.com/questions/202409/1366e3f2256f59d.png" /> 求: (1)函数的值域; (2)函数的最小正周期; (3)函数取得最大值时x的取值集合.</p><p>答 案:<img src="https://img2.meite.com/questions/202409/1366e3f22e7b5e3.png" /><img src="https://img2.meite.com/questions/202409/1366e3f232895f2.png" /> <img src="https://img2.meite.com/questions/202409/1366e3f23aa1914.png" /> <img src="https://img2.meite.com/questions/202409/1366e3f23f4d163.png" /><img src="https://img2.meite.com/questions/202409/1366e3f245d0b4a.png" /> <img src="https://img2.meite.com/questions/202409/1366e3f28911451.png" /></p><p>3、已知等差数列{a<sub>n</sub>}的公差为d(d≠0),且a<sub>1</sub>,a<sub>3</sub>,a<sub>6</sub>成等比数列,则<img src="https://img2.meite.com/questions/202409/1866ea703ed6d90.png" />()</p><p>答 案:4</p><p>解 析:<img src="https://img2.meite.com/questions/202409/1866ea71600c84e.png" /><img src="https://img2.meite.com/questions/202409/1866ea71652fdc1.png" /><img src="https://img2.meite.com/questions/202409/1866ea716a506a7.png" /></p><p>4、若<img src="https://img2.meite.com/questions/202409/1266e29fc596275.png" />的二项展开式中系数最大的项只有第7项,则n的值为()  </p><p>答 案:12</p><p>解 析:易知<img src="https://img2.meite.com/questions/202409/1266e29fc596275.png" />的二项展开式有n+1项.因为<img src="https://img2.meite.com/questions/202409/1266e29fc596275.png" />的二项展开式中系数最大的项只有第7项,所以n+1 = 13.解得 n = 12.</p><p class="introTit">简答题</p><p>1、已知等差数列{a<sub>n</sub>}的前n项和为S<sub>n</sub>且a<sub>3</sub>+a<sub>5</sub>=8,S<sub>3</sub>+S<sub>5</sub>=21. (1)求数列{an}的通项公式; (2)若<img src="https://img2.meite.com/questions/202409/1866ea73095ef4c.png" />为数列{bn}的前n项和,求Tn</p><p>答 案:<img src="https://img2.meite.com/questions/202409/1866ea7310746f9.png" /><img src="https://img2.meite.com/questions/202409/1866ea731574353.png" /><img src="https://img2.meite.com/questions/202409/1866ea731960298.png" /><img src="https://img2.meite.com/questions/202409/1866ea731e19dd8.png" /><img src="https://img2.meite.com/questions/202409/1866ea73249be5a.png" /></p><p>2、已知a,b,c分别是△ABC内角A,B,C的对边,且(b-c)<sup>2</sup>=a<sup>2</sup>-bc. (1)求角A的大小; (2)若a=3,sinC=2sinB,求△ABC的面积.</p><p>答 案:<img src="https://img2.meite.com/questions/202409/1466e54e1f3d86a.png" /><img src="https://img2.meite.com/questions/202409/1466e54e23c7767.png" /> <img src="https://img2.meite.com/questions/202409/1466e54e28dbbf2.png" /> <img src="https://img2.meite.com/questions/202409/1466e54e33a5dc0.png" /><img src="https://img2.meite.com/questions/202409/1466e54e39d5f28.png" /></p>
相关题库