2024年高职单招《数学(中职)》每日一练试题10月05日

聚题库
10/05
<p class="introTit">单选题</p><p>1、已知某圆锥的侧面展开图为半圆,该圆锥的体积为<img src="https://img2.meite.com/questions/202409/1866ea304f72b85.png" />,则该圆锥的表面积为</p><ul><li>A:27π</li><li>B:<img src='https://img2.meite.com/questions/202409/1866ea305ebb4fc.png' /></li><li>C:<img src='https://img2.meite.com/questions/202409/1866ea306766f35.png' /></li><li>D:16π</li></ul><p>答 案:A</p><p>解 析:设圆锥底面的半径为r,母线长为l,由题意得2πr= πl,所以l= 2r,所以圆锥的高为<img src="https://img2.meite.com/questions/202409/1866ea36a2c70c7.png" />,所以圆锥的体积为<img src="https://img2.meite.com/questions/202409/1866ea36b2147d0.png" />,解得r= 3,所以圆锥的表面积为 πr<sup>2</sup> + πrl = 9π +18π= 27π.</p><p>2、函数<img src="https://img2.meite.com/questions/202409/2166ee2d564f0fd.png" />的定义域为()</p><ul><li>A:(-∞,0)</li><li>B:[0,+∞]</li><li>C:(0,+∞)</li><li>D:(-∞,0)U(0,+∞)</li></ul><p>答 案:D</p><p>解 析:要使函数<img src="https://img2.meite.com/questions/202409/2166ee2d660c414.png" />有意义,须x≠0,所以函数f(x)的定义域为(-∞,0)U(0,+∞).</p><p>3、若一个球的体积为<img src="https://img2.meite.com/questions/202409/1866ea300b3d29f.png" />,则它的表面积为()</p><ul><li>A:3π</li><li>B:12</li><li>C:12π</li><li>D:36π</li></ul><p>答 案:C</p><p>解 析:设球的半径为R, 依题意<img src="https://img2.meite.com/questions/202409/1866ea358e49e7a.png" />,所以R=<img src="https://img2.meite.com/questions/202409/1866ea359e40738.png" />,所以球的表面积S=4πR<sup>2</sup>= 12π.</p><p>4、不等式<img src="https://img2.meite.com/questions/202409/2166ee87b253723.png" />的解集是()  </p><ul><li>A:(2,+∞)</li><li>B:(-∞,2)</li><li>C:R</li><li>D:(-∞,2)U(2,+∞)</li></ul><p>答 案:D</p><p>解 析:由<img src="https://img2.meite.com/questions/202409/2166ee87b253723.png" />可得<img src="https://img2.meite.com/questions/202409/2166ee8a625938e.png" />,解得<img src="https://img2.meite.com/questions/202409/2166ee8a6cabce8.png" />,所以原不等式的解集为(-∞,2)U(2,+∞).</p><p class="introTit">填空题</p><p>1、已知函数<img src="https://img2.meite.com/questions/202409/1166e13eebe1550.png" />若f(m)=3,则m=()</p><p>答 案:9</p><p>解 析:<img src="https://img2.meite.com/questions/202409/1166e13ef55e1e8.png" /><img src="https://img2.meite.com/questions/202409/1166e13f00ea099.png" /></p><p>2、已知直线l的倾斜角为直线3x-4y+4=0的倾斜角的一半,且直线l经过点(2,-3),则直线l的方程为()  </p><p>答 案:x-3y-11 =0</p><p>解 析:设直线!的倾斜角为<img src="https://img2.meite.com/questions/202409/1966ebd5c6beae6.png" />,则直线3x-4r+4=0的倾斜角为<img src="https://img2.meite.com/questions/202409/1966ebd5d4e6f39.png" />.且<img src="https://img2.meite.com/questions/202409/1966ebd5eaee610.png" />,即<img src="https://img2.meite.com/questions/202409/1966ebd5f9d0eaf.png" /><img src="https://img2.meite.com/questions/202409/1966ebd60578a10.png" />,解得<img src="https://img2.meite.com/questions/202409/1966ebd61494528.png" />,故直线l的斜率为<img src="https://img2.meite.com/questions/202409/1966ebd61febac8.png" />,又直线l经过点(2,-3),所以直线l的方程为<img src="https://img2.meite.com/questions/202409/1966ebd63510e2f.png" />,即x-3y-11 = 0.</p><p>3、已知f(x)是一次函数,且其图像过点A(-2,0),B(1,5),则f(x)=()</p><p>答 案:<img src="https://img2.meite.com/questions/202409/1166e10de8eac43.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202409/1166e10df074b40.png" /><img src="https://img2.meite.com/questions/202409/1166e10df590aa5.png" /></p><p>4、斜率为2的直线经过 A(3,5),B(a,7)两点,则a的值为()  </p><p>答 案:4</p><p>解 析:由题意得直线 AB 的斜率 k<sub>AB</sub>= 2,即<img src="https://img2.meite.com/questions/202409/1966eba2c1c02d7.png" />,解得a= 4.</p><p class="introTit">简答题</p><p>1、如图,在四边形ABCD中,BC=CD=6,AB=4,∠BCD=120°,∠ABC=75°,求四边形ABCD的面积. <img src="https://img2.meite.com/questions/202409/1466e5462f28491.png" /></p><p>答 案:<img src="https://img2.meite.com/questions/202409/1466e546354933f.png" /><img src="https://img2.meite.com/questions/202409/1466e5463e98880.png" /><img src="https://img2.meite.com/questions/202409/1466e54643041e7.png" /><img src="https://img2.meite.com/questions/202409/1466e54647359d2.png" /><img src="https://img2.meite.com/questions/202409/1466e5464c595ab.png" /><img src="https://img2.meite.com/questions/202409/1466e546543c008.png" /><img src="https://img2.meite.com/questions/202409/1466e5465ba073a.png" /></p><p>2、已知椭圆C的长轴长为10,两焦点F<sub>1</sub>,F<sub>2</sub>的坐标分别为(-3,0)和(3,0)(1)求椭圆的标准方程;<br />(2)若P为椭圆C上一点,<img src="https://img2.meite.com/questions/202409/1866ea4025c60a0.png" />,求△F<sub>1</sub>PF<sub>2</sub>的面积.  </p><p>答 案:(1)由题意设椭圆C的方程为<img src="https://img2.meite.com/questions/202409/1866ea73b71534d.png" />,焦距为 2c. 因为椭圆 C的长轴长为10,两焦点F<sub>1</sub>,F<sub>2</sub>的坐标分别为(-3,0)和(3,0), 所以2a=10,c=3, 所以a<sup>2</sup>=25,b<sup>2</sup>=a<sup>2</sup>-c<sup>2</sup>= 16, 所以椭圆C的标准方程为<img src="https://img2.meite.com/questions/202409/1866ea73ecd7ea0.png" /> (2)因为P为椭圆C上一点,且<img src="https://img2.meite.com/questions/202409/1866ea73f5a5b8f.png" /> 所以点P的横坐标为3, 代人椭圆方程可得点 P的纵坐标<img src="https://img2.meite.com/questions/202409/1866ea74140b5bf.png" /> 不妨设点P在x轴上方,则<img src="https://img2.meite.com/questions/202409/1866ea742d6c5b8.png" /> 所以△F<sub>1</sub>PF<sub>2</sub>的面积<img src="https://img2.meite.com/questions/202409/1866ea7454932cb.png" />  </p>
相关题库