2024年成考专升本《高等数学一》每日一练试题10月03日

聚题库
10/03
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666beedfb59fd4.png" />()。  </p><ul><li>A:-1/2</li><li>B:0</li><li>C:1/4</li><li>D:1/2</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666beedffb4bdd.png" /></p><p>2、<img src="https://img2.meite.com/questions/202212/0163884527c00f9.png" />()。</p><ul><li>A:-2</li><li>B:-1</li><li>C:1</li><li>D:2</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638845394b0ff.png" />A,积分区域为矩形,面积A为2,<img src="https://img2.meite.com/questions/202212/0163884545e6f08.png" />2。</p><p>3、函数<img src="https://img2.meite.com/questions/202211/296385d48be0185.png" />的单调减区间为()。</p><ul><li>A:(-∞,-2)<img src='https://img2.meite.com/questions/202211/296385d49202662.png' />(-2,+∞)</li><li>B:(-2,2)</li><li>C:(-∞,0)<img src='https://img2.meite.com/questions/202211/296385d4957925e.png' />(0,+∞)</li><li>D:(-2,0)<img src='https://img2.meite.com/questions/202211/296385d49a551a3.png' />(0,2)</li></ul><p>答 案:D</p><p>解 析:由<img src="https://img2.meite.com/questions/202211/296385d4ac0fc78.png" />,得驻点为x=±2,而不可导点为x=0,列表讨论如下:<img src="https://img2.meite.com/questions/202211/296385d4c940e24.png" />故单调减区间为(-2,0)<img src="https://img2.meite.com/questions/202211/296385d4d32a207.png" />(0,2)。</p><p class="introTit">主观题</p><p>1、求微分方程y'-<img src="https://img2.meite.com/questions/202212/03638ac17eaa5ba.png" />=lnx满足初始条件<img src="https://img2.meite.com/questions/202212/03638ac1908c65f.png" />=1的特解。</p><p>答 案:解:P(x)=<img src="https://img2.meite.com/questions/202212/03638ac1a3efa02.png" />,Q(x)=lnx,则<img src="https://img2.meite.com/questions/202212/03638ac1b4c4f05.png" />所以<img src="https://img2.meite.com/questions/202212/03638ac1c719a0f.png" />将<img src="https://img2.meite.com/questions/202212/03638ac1d4d883b.png" />=1代入y式,得C=1.故所求特解为<img src="https://img2.meite.com/questions/202212/03638ac2042e0a4.png" />。</p><p>2、设<img src="https://img2.meite.com/questions/202211/2963856c2de4338.png" />求C的值。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856c7163364.png" />则<img src="https://img2.meite.com/questions/202211/2963856cb44e6d7.png" />,有<img src="https://img2.meite.com/questions/202211/2963856cc277361.png" />,<img src="https://img2.meite.com/questions/202211/2963856cd1025c5.png" />。</p><p>3、试证:当x>0时,有不等式<img src="https://img2.meite.com/questions/202212/03638affc6aa0f3.png" /></p><p>答 案:证:先证x>sinx(x>0)。设f(x)=x-sinx,则f(x)=1-cosx≥0(x>0),所以f(x)为单调递增函数,于是对x>0有f(x)>f(0)=0,即x-sinx>0,亦即x>sinx(x>0)。再证<img src="https://img2.meite.com/questions/202212/03638affee811dd.png" /><br />令<img src="https://img2.meite.com/questions/202212/03638afffc44f70.png" /><br />则<img src="https://img2.meite.com/questions/202212/03638b0009b99c4.png" />,所以g'(x)单调递增,又g'(x)=0,可知g'(x)>g'(0)=0(x>0),那么有g(x)单调递增,又g(0)=0,可知g(x)>g(0)=0(x>0),所以<img src="https://img2.meite.com/questions/202212/03638b0054d6d06.png" />即<img src="https://img2.meite.com/questions/202212/03638b0063d9343.png" /><br />综上可得:当x>0时,<img src="https://img2.meite.com/questions/202212/03638b007c4f31d.png" />。</p><p class="introTit">填空题</p><p>1、反常积分<img src="https://img2.meite.com/questions/202408/1566bda8d77f562.png" />  </p><p>答 案:1</p><p>解 析:本题考查的知识点为反常积分,应依反常积分定义求解。 <img src="https://img2.meite.com/questions/202408/1566bda8dc693a0.png" />  </p><p>2、设f(x,y)=x+y-<img src="https://img2.meite.com/questions/202212/03638afd78e77c9.png" />,则f′x(3,4)=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638afd9345dd0.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638afd9fd02e3.png" />,<img src="https://img2.meite.com/questions/202212/03638afda97b0ea.png" /></p><p>3、二阶线性常系数齐次微分方程<img src="https://img2.meite.com/questions/202408/1666beef9c427a5.png" />的通解为____。  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666beefa0eec2d.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666beefa5e9bbb.png" /><img src="https://img2.meite.com/questions/202408/1666beefab0db82.png" /> <img src="https://img2.meite.com/questions/202408/1666beefae9b4e6.png" />  </p><p class="introTit">简答题</p><p>1、(1)求曲线Y=e<sup>x</sup>及直线x=1,x=0,y=0所围成的平面图形(如图3—3所示)的面积A。<img src="https://img2.meite.com/questions/202408/1666beb2bf142fc.png" /> (2)求(1)中平面图形绕x轴旋转一周所得旋转体的体积V<sub>x</sub>。  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666beb2c4845ba.png" /><img src="https://img2.meite.com/questions/202408/1666beb2c89b7c4.png" /></p>
相关题库