2024年成考专升本《高等数学一》每日一练试题10月01日

聚题库
10/01
<p class="introTit">单选题</p><p>1、过点(1,0,0),(0,1,0),(0,0,1)的平面方程为()。</p><ul><li>A:x+y+z=1</li><li>B:2x+y+z=1</li><li>C:x+2y+z=1</li><li>D:z+y+2z=1</li></ul><p>答 案:A</p><p>解 析:方法一:设所求平面方程为Ax+By+Cz+D=0.由于点(1,0,0),(0,1,0),(0,0,1)在平面上,将上述三点坐标分别代入所设方程,可得A+D=0,B+D=0,C+D=0,即A=B=C=-D,再代回方程可得x+y+z=1。方法二:由于点(1,0,0),(0,1,0),(0,0,1)分别位于x轴、y轴、z轴上,可由平面的截距式方程得出x+y+z=1即为所求平面方程。</p><p>2、设f(x)=<img src="https://img2.meite.com/questions/202211/29638564a7b9a5d.png" />在<img src="https://img2.meite.com/questions/202211/29638564b6ea729.png" />上连续,且<img src="https://img2.meite.com/questions/202211/29638564ca6d938.png" />,则常数a,b满足()。</p><ul><li>A:a<0,b≤0</li><li>B:a>0,b>0</li><li>C:a<0,b<0</li><li>D:a≥0,b<0</li></ul><p>答 案:D</p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/29638564e44f0ae.png" />在<img src="https://img2.meite.com/questions/202211/29638564fd5e758.png" />上连续,所以<img src="https://img2.meite.com/questions/202211/296385650bc10f1.png" />因<img src="https://img2.meite.com/questions/202211/296385652266523.png" />则a≥0,又因为<img src="https://img2.meite.com/questions/202211/296385653c413a3.png" />所以<img src="https://img2.meite.com/questions/202211/296385654a65f73.png" />时,必有<img src="https://img2.meite.com/questions/202211/296385655769208.png" />因此应有b<0。</p><p>3、设z=x<sup>3y</sup>,则<img src="https://img2.meite.com/questions/202212/01638841c6daa34.png" />=().</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/01638841d11f555.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/01638841db06fde.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/01638841e614a34.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/01638841f115e39.png' /></li></ul><p>答 案:D</p><p>解 析:将x看为常数,因此z为y的指数函数,可知<img src="https://img2.meite.com/questions/202212/01638842059f002.png" />。</p><p class="introTit">主观题</p><p>1、<img src="https://img2.meite.com/question/import/38122ef5ca6e8921ffc7a5a4cc1b3783.png" /></p><p>答 案:<img src="https://img2.meite.com/question/import/5dba69a2724d60821a1a3610ad6ceb11.png" /></p><p>2、曲线y<sup>2</sup>+2xy+3=0上哪点的切线与x轴正向所夹的角为<img src="https://img2.meite.com/questions/202211/306387084c6472d.png" />?</p><p>答 案:解:将y<sup>2</sup>+2xy+3=0对x求导,得<img src="https://img2.meite.com/questions/202211/3063870d95a64b6.png" />欲使切线与x轴正向所夹的角为<img src="https://img2.meite.com/questions/202211/306387084c6472d.png" />,只要切线的斜率为1,即<img src="https://img2.meite.com/questions/202211/30638709b34c86f.png" />亦即x+2y=0,设切点为(x<sub>0</sub>,y<sub>0</sub>),则x<sub>0</sub>+2y<sub>0</sub>=0①<br />又切点在曲线上,即y<sub>0</sub><sup>2</sup>+2x<sub>0</sub>y<sub>0</sub>+3=0②<br />由①,②得y<sub>0</sub>=±1,x<sub>0</sub>=±2<br />即曲线上点(-2,1),(2,-1)的切线与x轴正向所夹的角为<img src="https://img2.meite.com/questions/202211/306387084c6472d.png" />。</p><p>3、<img src="https://img2.meite.com/question/import/50494b9e025a419e52b329d35f346451.png" /></p><p>答 案:<img src="https://img2.meite.com/question/import/d7fd6a41cf155f0af5baed85955216c3.png" /></p><p class="introTit">填空题</p><p>1、设区域<img src="https://img2.meite.com/questions/202405/166645be00cec46.png" />,则<img src="https://img2.meite.com/questions/202405/166645be05c573a.png" />()  </p><p>答 案:4</p><p>解 析:<img src="https://img2.meite.com/questions/202405/166645be0f0f3ce.png" /></p><p>2、二阶常系数齐次微分方程<img src="https://img2.meite.com/questions/202408/1666bf0ccf57b7a.png" />的通解为_____。  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf0cd475f26.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bf0cd8a41b0.png" /><img src="https://img2.meite.com/questions/202408/1666bf0cdbb3e63.png" /> <img src="https://img2.meite.com/questions/202408/1666bf0cdfa481c.png" />  </p><p>3、曲线y=<img src="https://img2.meite.com/questions/202212/03638afd3e746a1.png" />与直线y=x,x=2围成的图形面积为()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638afd4d17c12.png" />-1n2</p><p>解 析:由题作图<img src="https://img2.meite.com/questions/202212/03638afd58e2b10.png" />,由图可知所求面积为<img src="https://img2.meite.com/questions/202212/03638afd6d4bb4d.png" /></p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bf067a1aa87.png" />(1)求曲线y=f(x);<br />(2)求由曲线y=f(x),y=0,x=1所围图形绕x轴旋转一周所得旋转体体积。  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf067ed8011.png" /> <img src="https://img2.meite.com/questions/202408/1666bf0682f1959.png" />  </p>
相关题库