2024年成考专升本《高等数学二》每日一练试题09月30日

聚题库
09/30
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()  </p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" />  </p><p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202408/1966c2e4de7de2e.png" />()。  </p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1966c2e4e21e420.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/1966c2e4e5d0b4b.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/1966c2e4e949bd3.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1966c2e4ed5b143.png' /></li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1966c2e4f3033d6.png" /></p><p>2、定积分<img src="https://img2.meite.com/questions/202212/07639008d58dc33.png" />等于()</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/07639008e04ba1d.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/07639008ec023e8.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/07639008f77bcdf.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/076390090103b88.png' /></li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202212/07639009133aaa5.png" /><img src="https://img2.meite.com/questions/202212/07639009257f9f3.png" /></p><p class="introTit">主观题</p><p>1、求由方程siny+xe<sup>y</sup>=0确定的曲线在点(0,π)处的切线方程.</p><p>答 案:解:方程两边对x求导得<img src="https://img2.meite.com/questions/202212/07638ff644b304e.png" />得<img src="https://img2.meite.com/questions/202212/07638ff6525e5d7.png" />所以<img src="https://img2.meite.com/questions/202212/07638ff660f27da.png" />,故所求切线方程为y-π=e<sup>π</sup>(x-0),即e<sup>π</sup>x-y+π=0</p><p>2、已知函数f(x)=-x<sup>2</sup>+2x.(1)求曲线y=f(x)与x轴所围成的平面图形的面积S;<br />(2)求(1)中的平面图形绕x轴旋转一周所得旋转体的体积V.</p><p>答 案:解:(1)由<img src="https://img2.meite.com/questions/202212/05638d5a4828a6c.png" />得曲线与x轴交点坐标为(0,0),(2,0).<img src="https://img2.meite.com/questions/202212/05638d5a5bab1e4.png" />(2)<img src="https://img2.meite.com/questions/202212/05638d5a6c4ad19.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202212/06638ebc8706c7d.png" />().</p><p>答 案:<img src="https://img2.meite.com/questions/202212/06638ebc92aabc8.png" /></p><p>解 析:由等价无穷小知<img src="https://img2.meite.com/questions/202212/06638ebca2d68cd.png" />,<img src="https://img2.meite.com/questions/202212/06638ebcb529b96.png" />,所以<img src="https://img2.meite.com/questions/202212/06638ed6d4d4709.png" /></p><p>2、<img src="https://img2.meite.com/questions/202303/206417f999f22de.png" />()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/206417f9ace5537.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/206417f9bfa54f4.png" /><img src="https://img2.meite.com/questions/202303/206417f9c55298f.png" /></p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1966c2ba62d9081.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1966c2ba66c879f.png" /></p><p>2、求函数<img src="https://img2.meite.com/questions/202204/2562660e19e39fc.png" />的单调区间、极值及函数曲线的凸凹性区间、拐点和渐近线.</p><p>答 案:<img src="https://img2.meite.com/questions/202204/256266103aab823.png" /><img src="https://img2.meite.com/questions/202204/2562661046e0549.png" />所以函数y的单调增区间为<img src="https://img2.meite.com/questions/202204/2562661067d7186.png" />单调减区间为(0,1);函数y的凸区间为<img src="https://img2.meite.com/questions/202204/25626611135d877.png" />凹区间为<img src="https://img2.meite.com/questions/202204/256266112020f6d.png" />故x=0时,函数有极大值0,x=1时,函数有极小值-1,且点<img src="https://img2.meite.com/questions/202204/256266118962fa6.png" />为拐点,因<img src="https://img2.meite.com/questions/202204/2562661199f2f22.png" />不存在,且<img src="https://img2.meite.com/questions/202204/25626611a774dee.png" />没有无意义的点,故函数没有渐近线。</p>
相关题库