2024年高职单招《数学(中职)》每日一练试题09月28日
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202409/2166ee3df6f1efd.png" />的()</p><ul><li>A:充分条件</li><li>B:必要条件</li><li>C:充要条件</li><li>D:既不充分也不必要条件</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202409/2166ee3dec1a073.png" /><img src="https://img2.meite.com/questions/202409/2166ee3df0c1f8c.png" /></p><p>2、已知数列{an}为等比数列,若a<sub>1</sub>=8,a<sub>4</sub>=64,则公比q等于()
</p><ul><li>A:3</li><li>B:-3</li><li>C:2</li><li>D:-2</li></ul><p>答 案:C</p><p>解 析:由题意得<img src="https://img2.meite.com/questions/202409/2166ee6815ae976.png" />,所以q=2。</p><p>3、<img src="https://img2.meite.com/questions/202409/1266e29d5f5179a.png" />的展开式中的常数项为()
</p><ul><li>A:120</li><li>B:35</li><li>C:84</li><li>D:56</li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202409/1266e29d5f5179a.png" />的展开式的通项<img src="https://img2.meite.com/questions/202409/1266e2a1963e194.png" />,<img src="https://img2.meite.com/questions/202409/1266e2a1a964d0a.png" />,则k=3,所以常数项为<img src="https://img2.meite.com/questions/202409/1266e2a1bd743b4.png" />84</p><p>4、已知f(x)是R上的奇函数,当x>0时,f(x)=2<sup>x</sup>-1.若<img src="https://img2.meite.com/questions/202409/2166ee74894f5bd.png" />,则a的取值范围是()</p><ul><li>A:<img src='https://img2.meite.com/questions/202409/2166ee720933adc.png' /></li><li>B:<img src='https://img2.meite.com/questions/202409/2166ee720ed72b2.png' /></li><li>C:<img src='https://img2.meite.com/questions/202409/2166ee745f454d1.png' /></li><li>D:<img src='https://img2.meite.com/questions/202409/2166ee74667417a.png' /></li></ul><p>答 案:B</p><p>解 析:易知当<img src="https://img2.meite.com/questions/202409/2166ee747201a7e.png" />时f(x)=2<sup>x</sup>-1单调递增.因为f(x)是R上的奇函数,所以f(x)在(-∞,0)上单调递增,且f(0)=2<sup>0</sup>-1=0.易知函数f(x)在R上单调递增.<img src="https://img2.meite.com/questions/202409/2166ee747a9e69f.png" />,解得<img src="https://img2.meite.com/questions/202409/2166ee7216152ea.png" /></p><p class="introTit">填空题</p><p>1、(1-ax)<sup>6</sup>的展开式中x<sup>3</sup>的系数为 20,则a的值为()
</p><p>答 案:-1</p><p>解 析:易知(1-ax)<sup>6</sup>的展开式中x<sup>3</sup> 的系数为 <img src="https://img2.meite.com/questions/202409/1266e2a6c84ec77.png" />,解得a=-1.</p><p>2、在二项式(x-1)<sup>6</sup>的展开式中,系数最小的项是第()项.
</p><p>答 案:4</p><p>解 析:易知(x-1)<sup>6</sup>的展开式的通项<img src="https://img2.meite.com/questions/202409/1266e2a84051bbc.png" />,所以当k取1,3,5时,系数小于0.由组合数的性质知当日仅当k=3时,<img src="https://img2.meite.com/questions/202409/1266e2a867af72c.png" />取最大值,所以当k=3时,系数取最小值,所以系数最小的项是第4项.</p><p>3、已知函数f(x)=2x<sup>2</sup>-4kx-5在区间[-1,2]上不具有单调性,则k的取值范围是()
</p><p>答 案:(-1,2)</p><p>解 析:函数f(x)=2x<sup>2</sup>-4kx-5图像的对称轴为直线<img src="https://img2.meite.com/questions/202409/1166e14ddb0da86.png" /><img src="https://img2.meite.com/questions/202409/1166e14ddf47c0a.png" /></p><p>4、在长方体ABCD-A<sub>1</sub>B<sub>1</sub>C<sub>1</sub>D<sub>1</sub>中,AB=4,BC=3,BB<sub>1</sub>=2,那么 BC 到平面 ADD<sub>1</sub>A<sub>1</sub>的距离为()
</p><p>答 案:4</p><p>解 析:易得BC//平面ADD<sub>1</sub>A<sub>1</sub>,所以点B到平面ADD<sub>1</sub>A<sub>1</sub>的距离为BC到平面ADD<sub>1</sub>A<sub>1</sub>的距离.因为<img src="https://img2.meite.com/questions/202409/1366e3aaa21e26d.png" />,所以AB的长为BC到平面ADD<sub>1</sub>A<sub>1</sub>的距离.又AB=4,所以BC到平面 ADD<sub>1</sub>A<sub>1</sub>的距离为 4.</p><p class="introTit">简答题</p><p>1、已知曲线C的方程为<img src="https://img2.meite.com/questions/202409/1866ea3ff0d9ec3.png" />,求满足下列条件时,实数m的取值范围,(1)曲线C是椭圆;<br />(2)曲线C是双曲线.
</p><p>答 案:(1)∵曲线C的方程<img src="https://img2.meite.com/questions/202409/1866ea3ff0d9ec3.png" />可化为<img src="https://img2.meite.com/questions/202409/1866ea72fb48f00.png" /> 又曲线C是椭圆,
∴<img src="https://img2.meite.com/questions/202409/1866ea732bb9182.png" />解得3<m<7且m≠5,
∴实数 m 的取值范围为(3,5)U(5,7).
(2)∵曲线C是双曲线,
∴(7-m)(3-m)>0,解得m<3或m>7,
故实数 m 的取值范围为(-∞,3)U(7,+∞).
</p><p>2、等差数列{an}满足a<sub>1</sub>+a<sub>2</sub>=10,a<sub>4</sub>-a<sub>3</sub>=2.
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b<sub>2</sub>=a<sub>3</sub>,b<sub>3</sub>=a<sub>7</sub>,求数列{bn}的前n项和S<sub>n</sub>.</p><p>答 案:<img src="https://img2.meite.com/questions/202409/1866ea71ec96351.png" /><img src="https://img2.meite.com/questions/202409/1866ea723996d97.png" /><img src="https://img2.meite.com/questions/202409/1866ea723ea2ad0.png" /><img src="https://img2.meite.com/questions/202409/1866ea7244bc9b0.png" /><img src="https://img2.meite.com/questions/202409/1866ea724acf422.png" /><img src="https://img2.meite.com/questions/202409/1866ea725089055.png" /><img src="https://img2.meite.com/questions/202409/1866ea72580747e.png" /></p>