2024年成考专升本《高等数学二》每日一练试题09月28日

聚题库
09/28
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()  </p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" />  </p><p class="introTit">单选题</p><p>1、已知函数f(x)的导函数f'(x)=3x<sup>2</sup>-x-1,则曲线y=f(x)在x=2处切线的斜率是().</p><ul><li>A:3</li><li>B:5</li><li>C:9</li><li>D:11</li></ul><p>答 案:C</p><p>解 析:曲线y=f(x)在x=2处切线的斜率即为f(x)在x=2时的导数值,即f‘’(2)=9.</p><p>2、定积分<img src="https://img2.meite.com/questions/202212/0763900cd3bb1a6.png" />()</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/0763900d19d50c9.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/0763900d239fa83.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/0763900d2d732b2.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/0763900d3a331fc.png' /></li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202212/0763900d49b1cfa.png" /></p><p class="introTit">主观题</p><p>1、设由<img src="https://img2.meite.com/questions/202212/0863914b26bfd19.png" />确定z=z(x,y),求<img src="https://img2.meite.com/questions/202212/0863914b4b236af.png" />,<img src="https://img2.meite.com/questions/202212/0863914b5884c10.png" />.</p><p>答 案:解:设<img src="https://img2.meite.com/questions/202212/0863914b667c533.png" />则<img src="https://img2.meite.com/questions/202212/0863914b74b9dac.png" /><img src="https://img2.meite.com/questions/202212/0863914b89b0753.png" /></p><p>2、计算<img src="https://img2.meite.com/questions/202212/05638d5894d6dba.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/05638d58a44261f.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202212/05638d668c39471.png" />().</p><p>答 案:1</p><p>解 析:由等价无穷小可知,<img src="https://img2.meite.com/questions/202212/05638d66a2e8b4b.png" />时,即<img src="https://img2.meite.com/questions/202212/05638d66b23eb80.png" />,<img src="https://img2.meite.com/questions/202212/05638d66c1b7b0d.png" />,故<img src="https://img2.meite.com/questions/202212/05638d66cedeb09.png" />.</p><p>2、曲线y=2x<sup>2</sup>在点(1,2)处的切线方程为y=().</p><p>答 案:4x-2</p><p>解 析:<img src="https://img2.meite.com/questions/202212/05638d66e7a793b.png" />,<img src="https://img2.meite.com/questions/202212/05638d66f2dbc69.png" />,故切线方程为<img src="https://img2.meite.com/questions/202212/05638d66ff0b79f.png" />,即<img src="https://img2.meite.com/questions/202212/05638d670bb0e73.png" />.</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bf1640ea479.png" />。  </p><p>答 案:本题考查的知识点是凑微分积分法。 <img src="https://img2.meite.com/questions/202408/1666bf1645c38f3.png" />  </p><p>2、<img src="https://img2.meite.com/questions/202408/2066c40a48a0a10.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/2066c40aa9b74e5.png" /></p>
相关题库