2024年成考专升本《高等数学一》每日一练试题09月26日
<p class="introTit">单选题</p><p>1、若f(x)为[a,b]上的连续函数,则<img src="https://img2.meite.com/questions/202211/30638711c237f0d.png" />()。</p><ul><li>A:小于0</li><li>B:大于0</li><li>C:等于0</li><li>D:不确定</li></ul><p>答 案:C</p><p>解 析:f(x)为[a,b]上的连续函数,故<img src="https://img2.meite.com/questions/202211/30638711d4aa408.png" />存在,它为一个确定的常数,由定积分与变量无关的性质,可知<img src="https://img2.meite.com/questions/202211/30638711eabc5eb.png" />故<img src="https://img2.meite.com/questions/202211/30638711f6c6ef5.png" />=0。</p><p>2、级数<img src="https://img2.meite.com/questions/202212/0163885515b244e.png" />(k为非零常数)()。</p><ul><li>A:发散</li><li>B:绝对收敛</li><li>C:条件收敛</li><li>D:收敛性与k有关</li></ul><p>答 案:C</p><p>解 析:级数各项取绝对值得级数<img src="https://img2.meite.com/questions/202212/016388552b2e6d2.png" />为发散级数;由莱布尼茨判别法可知<img src="https://img2.meite.com/questions/202212/016388553fc0466.png" />收敛,故<img src="https://img2.meite.com/questions/202212/0163885551ad5f1.png" />为条件收敛。</p><p>3、曲线<img src="https://img2.meite.com/questions/202303/176413e20ef1385.png" />与其过原点的切线及y轴所围面积为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/176413e22131363.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/176413e228b6826.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/176413e22d7bf72.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/176413e233b0b84.png' /></li></ul><p>答 案:A</p><p>解 析:设<img src="https://img2.meite.com/questions/202303/176413e24ca4a55.png" />为切点,则切线方程为<img src="https://img2.meite.com/questions/202303/176413e25bd7507.png" />联立<img src="https://img2.meite.com/questions/202303/176413e26a09694.png" />得<img src="https://img2.meite.com/questions/202303/176413e279016e2.png" />所以切线方程为y=ex,故所求面积为<img src="https://img2.meite.com/questions/202303/176413e29f7d093.png" /></p><p class="introTit">主观题</p><p>1、已知当x→0时,<img src="https://img2.meite.com/questions/202211/2963856d1f10115.png" />是等价无穷小量,求常数a的值。</p><p>答 案:解:因为当x→0时,<img src="https://img2.meite.com/questions/202211/2963856d36e0130.png" />是等价无穷小量,所以有<img src="https://img2.meite.com/questions/202211/2963856d485d2ef.png" />则<img src="https://img2.meite.com/questions/202211/2963856d5c23a0c.png" />解得a=2。</p><p>2、计算<img src="https://img2.meite.com/questions/202212/03638b00b3592fa.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638b00c097bc9.png" /></p><p>3、判定级数<img src="https://img2.meite.com/questions/202212/03638af1a91015d.png" />的敛散性.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638af1ba750d3.png" />含有参数a>0,要分情况讨论:(1)如果0<a<1,则<img src="https://img2.meite.com/questions/202212/03638af1ce30308.png" />,由级数收敛的必要条件可知,原级数发散。(2)如果a>1,令<img src="https://img2.meite.com/questions/202212/03638af1f837489.png" />=<img src="https://img2.meite.com/questions/202212/03638af1fd403f6.png" />;因为<img src="https://img2.meite.com/questions/202212/03638af20aec47c.png" /><1,因而<img src="https://img2.meite.com/questions/202212/03638af2197e35f.png" />是收敛的,比较法:<img src="https://img2.meite.com/questions/202212/03638af22c14c44.png" /><br />所以<img src="https://img2.meite.com/questions/202212/03638af2377e88e.png" />也收敛。<br />(3)如果a=1,则<img src="https://img2.meite.com/questions/202212/03638af24ff2071.png" />所以<img src="https://img2.meite.com/questions/202212/03638af2632cc46.png" />,由级数收敛的必要条件可知,原级数发散。所以<img src="https://img2.meite.com/questions/202212/03638af274be0c7.png" /></p><p class="introTit">填空题</p><p>1、设z=arctanxy,则<img src="https://img2.meite.com/questions/202212/016388488057895.png" />+<img src="https://img2.meite.com/questions/202212/016388488b08cef.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163884895bf306.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638848cf2d5c9.png" />,故<img src="https://img2.meite.com/questions/202212/01638848de73a53.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202408/1666beee8ddfcb8.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666beee918e6cd.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666beee950ba55.png" /></p><p>3、<img src="https://img2.meite.com/questions/202211/30638722026e1bf.png" />()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/306387220ce46d3.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/306387221aad9d8.png" /></p><p class="introTit">简答题</p><p>1、求方程<img src="https://img2.meite.com/questions/202303/17641427a20cfc0.png" />的通解。
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/17641427b60f0c0.png" /></p>