2024年成考专升本《高等数学一》每日一练试题09月25日
<p class="introTit">单选题</p><p>1、设<img src="https://img2.meite.com/questions/202211/176375ffb347729.png" />()。</p><ul><li>A:2x+1</li><li>B:2xy+1</li><li>C:<img src='https://img2.meite.com/questions/202211/176375ffc1a95e7.png' /></li><li>D:2xy</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/176375ffd21b049.png" />只需将y看作常量,因此<img src="https://img2.meite.com/questions/202211/176375ffe6a0591.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202408/1566bdc066bddff.png" />
</p><ul><li>A:1</li><li>B:<img src='https://img2.meite.com/questions/202408/1566bdc06b250fd.png' /></li><li>C:m</li><li>D:m<sup>2</sup></li></ul><p>答 案:D</p><p>解 析:本题考查的知识点为重要极限公式或等价无穷小量代换。 <img src="https://img2.meite.com/questions/202408/1566bdc07028e58.png" />
</p><p>3、设二元函数z=f(xy,x<sup>2</sup>+y<sup>2</sup>),且函数f(u,v)可微,则<img src="https://img2.meite.com/questions/202212/03638ae6abe89d2.png" />等于()。</p><ul><li>A:y+2x</li><li>B:<img src='https://img2.meite.com/questions/202212/03638ae6b79cdcb.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/03638ae6c4c4dc5.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/03638ae6d3da92c.png' /></li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638ae6e0ab24e.png" />。</p><p class="introTit">主观题</p><p>1、试证:当x>0时,有不等式<img src="https://img2.meite.com/questions/202212/03638affc6aa0f3.png" /></p><p>答 案:证:先证x>sinx(x>0)。设f(x)=x-sinx,则f(x)=1-cosx≥0(x>0),所以f(x)为单调递增函数,于是对x>0有f(x)>f(0)=0,即x-sinx>0,亦即x>sinx(x>0)。再证<img src="https://img2.meite.com/questions/202212/03638affee811dd.png" /><br />令<img src="https://img2.meite.com/questions/202212/03638afffc44f70.png" /><br />则<img src="https://img2.meite.com/questions/202212/03638b0009b99c4.png" />,所以g'(x)单调递增,又g'(x)=0,可知g'(x)>g'(0)=0(x>0),那么有g(x)单调递增,又g(0)=0,可知g(x)>g(0)=0(x>0),所以<img src="https://img2.meite.com/questions/202212/03638b0054d6d06.png" />即<img src="https://img2.meite.com/questions/202212/03638b0063d9343.png" /><br />综上可得:当x>0时,<img src="https://img2.meite.com/questions/202212/03638b007c4f31d.png" />。</p><p>2、求二元函数<img src="https://img2.meite.com/questions/202212/01638851cc53e6f.png" />的极值。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/01638851e4935b5.png" />则由<img src="https://img2.meite.com/questions/202212/01638851f7adb87.png" /><img src="https://img2.meite.com/questions/202212/01638852088c159.png" />点P(-1,1)为唯一驻点,<img src="https://img2.meite.com/questions/202212/016388528d5cc07.png" />因此点(-1,-1)为z的极小值点,极小值为-1。</p><p>3、求<img src="https://img2.meite.com/questions/202211/176375a84a8cfed.png" /></p><p>答 案:解:方法一:(洛必达法则)<img src="https://img2.meite.com/questions/202211/176375a85dc2360.png" />方法二:(等价无穷小)<img src="https://img2.meite.com/questions/202211/176375a870ab12a.png" /><img src="https://img2.meite.com/questions/202211/176375a87faccf4.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202211/29638568587fe7c.png" />的间断点为()。</p><p>答 案:x=-3</p><p>解 析:x=-3时,<img src="https://img2.meite.com/questions/202211/2963856869b6ff9.png" />没有定义,因此x=-3为间断点。</p><p>2、级数<img src="https://img2.meite.com/questions/202212/0163885ee7af878.png" />()收敛。</p><p>答 案:绝对</p><p>解 析:因为<img src="https://img2.meite.com/questions/202212/0163885efa56e92.png" />,又级数<img src="https://img2.meite.com/questions/202212/0163885f06c8211.png" />收敛,所以<img src="https://img2.meite.com/questions/202212/0163885f187bb6c.png" />绝对收敛。</p><p>3、过点M<sub>0</sub>(1,-2,0)且与直线<img src="https://img2.meite.com/questions/202212/0163881f355e9f9.png" />垂直的平面方程为()。</p><p>答 案:3(x-1)-(y+2)+x=0(或3x-y+z=5)</p><p>解 析:因为直线的方向向量s=(3,-1,1),且平面与直线垂直,所以平面的法向量<img src="https://img2.meite.com/questions/202212/0163881f580333e.png" />,由点法式方程有平面方程为:3(x-1)-(y+2)+(z-0)=0,即3(x-1)-(y+2)+z=0。</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666beeffbdf323.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666beefffe21af.png" /></p>